11th HYCOM meeting – Apr 24-26 2007 NRL Stennis Space Center, MS

River plume experiments with HYCOM in an idealized basin

Rafael Vergara Schiller Villy Kourafalou

University of Miami - RSMAS

INTRODUCTION

Coastal buoyant plumes

- Buoyancy forced process
- Large scale plumes
- Geostrophic adjustment
- Anticyclonic motion
- Development of a buoyancy driven coastal current

$$r_i = c_i / f$$
$$u_F = (g'Q_F)^{1/3}$$

$$Q_F = Q/W$$

•Kourafalou et al., 1996

Objective

 Understand dynamics of buoyant plumes and major factors that determine their development

2/23/03 Southeast Wind

- Application
 - Mississippi River plume

MODIS satellite imagery

22/03 Northwest Wind

- METHODOLOGY
- HYCOM
- Box-like domain
 - Mid-latitude, f-plane ($f = 10^{-4} \text{ s}^{-1}$)
 - $-\Delta x = \Delta y = 5 \ km$
 - 10 vertical levels
 - River inflow at the head of the estuary
 - Virtual salt flux approach
 - Offshore open boundaries

505 km

Numerical experiments

Bottom topography	Flat 20m	Flat 10m	Flat 5m	Slope (0.002)
Coastal morphology	Estuary	Delta	Plain coast	
River discharge	900 m ³ s ⁻¹	2700 m ³ s ⁻¹		
River thickness parameterization	0 %	20 %	40 %	80 %
Vertical coordinate	Z	Sigma	Isopycnal	Hybrid
Mixing scheme	KPP	KPP MY 2.5		
KPP modifications	Enhanced background internal wave mixing			
Other river options	Epmass	Nsmooth		

Group I: Variable topography

Experiment	l.a	l.b	l.c	l.d
Bottom topography	20m flat	5m flat	Slope (0.002) 5m at the coast	20m flat
Coastal morphology	Estuary	Estuary	Estuary	Delta

900 m³s⁻¹, 0% river thickness

Group II: Variable river thickness

Experiment	II.a	II.b	ll.c	ll.d
River thickness	20%	40%	20%	40%
Bottom topography	20m flat	20m flat	5m flat	5m flat

900 *m*³s⁻¹, estuary

Group III: Vertical stratification

Experiment	l.a	l.b	l.c
River discharge	2700 m ³ s ⁻¹	900 m ³ s ⁻¹	900 m ³ s ⁻¹
Background internal wave vertical diffusivity coef	10 ⁻⁵ m ² s ⁻¹	10 ⁻⁴ m ² s ⁻¹	10 ⁻⁴ m ² s ⁻¹
		domain	estuary

Estuary, river thickness 0%

• Group IV: Epmass

Experiment	IV.a	IV.b
Epmass	on	on
River thickness	0%	20%

900 m³s⁻¹, estuary

Initial conditions

- Homogeneous basin (35 psu, 28 °C)
- State of rest
- 60 days period simulations
- River inflow is the only forcing mechanism

• **RESULTS**

Standard case

– Estuary, 900m³s⁻¹, 20m deep flat bottom

→ 6 cm/s

Changing topography (Group I) 900 m³s⁻¹

- Deeper basins: surface advected plumes
- Shallower basins: surface to bottom plumes

Estuary mouth

Changing river thickness (Group II)

– Estuary, 900 m³s⁻¹, 20m deep flat bottom

Stronger coastal current signal with increasing river thickness

• Vertical Stratification (Group III)

- Estuary, 20m deep flat bottom, river thickness 0%

iw vertical diffusivity = 1*10⁻⁴ m²s⁻¹

Estuary mouth

- Estuary, 20m deep flat bottom, river thickness 0%

iw vertical diffusivity = $1*10^{-4}$ m²s⁻¹

• Epmass (Group IV)

– Estuary, 900 m³s⁻¹, 20m deep flat bottom

- Estuary, 20m deep flat bottom

- SUMMARY
- Idealized buoyant plume dynamics were reproduced with HYCOM
- General structure of a typical mid-latitude buoyant plume
 - Offshore bulge with anticyclonic circulation
 - Development of a coastal current
- The offshore extent of the bulge, the strength of the coastal current and the vertical stratification were dependent on
 - River parameterization options
 - Amount of river discharge
 - Bottom topography / coastal morphology
 - Available vertical mixing

- Different HYCOM mixing schemes produced similar results
- In the presence of buoyancy forcing only, enhanced downward penetration of the "rain" that represents river input can be achieved by the "river thickness" parameter or by enhancing the vertical eddy diffusivity within the estuary
- Addition of EPMASS is important for the dynamics
- Including tides is expected to provide more realistic plume representation, by providing enhanced background mixing

NEXT STEPS

- Similar experiments in a domain with realistic MR delta topography
- Daily varying discharge and distribution at different sources around the delta
- Addition of tidal and wind forcing
- Study of plume/eddy interactions

Bathy-01 (raw from DBDB2)

-50	0	50	100	150	200	250
0		0	ŏ	ŏ	ŏ	ă

THANKS