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[1] This paper investigates the influence of atmospheric variables (net solar radiation,
wind speed, precipitation and vapor mixing ratio, all of which are at or near the sea
surface) on the annual and seasonal cycle of near surface air minus sea surface temperature
(Tair–Tsst) over the global ocean. The importance order of these variables is discussed
using several statistical methods and two global data sets. After demonstrating that neither
Tair nor Tsst exhibit any skill in determining difference between the two, a regression
tree model (the so-called Generalized, Unbiased, Interaction Detection and Estimation
(GUIDE) algorithm) is used to investigate influences of the atmospheric variables
mentioned above in regulating Tair–Tsst. Overall, net solar radiation (sum of net
shortwave and longwave radiation) at the sea surface is found to be the most important
variable in driving the seasonal cycle of Tair–Tsst over the global ocean when the
nonlinear relationship between Tair–Tsst and atmospheric variables is taken into account.
This is true for both annual and seasonal (May through August) or monthly (November
and December) timescales. Similar to the GUIDE results, a simple linear regression
analysis also confirms that the net solar radiation explains most of the variance in the
seasonal cycle of Tair–Tsst over most (�50%) of the global ocean. The importance of the
net solar radiation in controlling Tair–Tsst is even more significant in the regions
surrounding the Kuroshio and the Gulf Stream current systems. The results presented in
this paper have various implications for air–sea interaction and ocean mixed layer studies.
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1. Introduction

[2] Differences between air temperature (Tair) near the
sea surface (e.g., at 10 m above the sea surface) and sea
surface temperature (Tsst) have important implications for
climate studies over the global ocean. Oceans exchange
energy with the atmosphere via evaporation and turbulent
transfer of sensible heat. Tair–Tsst is an important control-
ling factor in these exchanges [Kraus and Businger, 1994;
Yu et al., 2004]. Air typically either gains (loses) heat from
(to) the ocean depending on the sign of Tair–Tsst through
the sensible heat flux [e.g., Cayan, 1992; Fairall et al.,
2003].
[3] In addition to the sign, the magnitude of Tair–Tsst

also plays a major role in maintaining the heating/cooling
processes over the ocean surface [e.g., Send et al., 1987;
Soloviev and Lukas, 1997; Soloviev et al., 2001]. There-
fore, heat budget studies for the ocean mixed layer and the
atmospheric boundary layer above the sea surface require
quantitative analysis of Tair–Tsst and factors affecting

this difference. Numerical ocean modeling studies [e.g.,
Murtugudde et al., 2002; Barron et al., 2004; Kara et al.,
2004] generally require knowledge of Tair–Tsst for sta-
bility corrections in calculating wind stress, sensible and
latent heat fluxes [Kara et al., 2005].
[4] An examination of the climatological monthly means

of Tair–Tsst reveals large spatial and temporal variations
over the global ocean (Figure 1), but Tsst is typically
warmer than Tair. The magnitude of Tair–Tsst can even
be <�3�C along the Kuroshio and Gulf Stream pathways.
Because this temperature difference varies regionally, in this
paper we investigate how different atmospheric variables
affect such changes in Tair–Tsst.
[5] As expected, differences between Tair and Tsst are

closely related to processes at the air–sea interface. A
typical example is that as explained in Frankignoul
[1985], net surface heat flux, in particular a combination
of latent and sensible heat fluxes involving vapor mixing
ratio and Tair–Tsst values, is highly correlated with Tair–
Tsst, but weakly correlated with Tsst alone over most of the
mid–latitudes. This simply indicates that Tair–Tsst cannot
be drived from Tair or Tsst by itself, implying the existence
of other variables in its regulation.
[6] Given the increasing emphasis placed on studying the

ocean’s role in climate dynamics, as mentioned above,
understanding the relationship between Tair and Tsst is
essential. Thus, the major objective of this paper is to
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address the question, ‘‘which atmospheric variable has the
greatest influence on Tair–Tsst?’’ Possible answers to this
question are sought on climatological timescales by analy-
zing data from two global data sets using various statistical
approaches. In particular, we use atmospheric variables
at/near the sea surface (net solar radiation, wind speed, vapor
mixing ratio and precipitation) to examine the importance
order of each one in driving the seasonal cycle of Tair–Tsst.
[7] The paper is divided into six sections. First, data sets

and statistical metrics used throughout the paper are des-
cribed (section 2), followed by an analysis for the rela-
tionship between Tair and Tsst (section 3). Next, the
influence of atmospheric forcing variables on Tair–Tsst
is investigated over the global ocean on climatological
timescales (section 4), and important variables that are
essential in driving the seasonal cycle of Tair–Tsst are
investigated by building a regression tree model that can
fit piecewise linear models (section 5). Finally, conclusions
of the paper are provided (section 6).

2. Data and Statistical Metrics

[8] The relationship between Tair and Tsst (and between
Tair–Tsst and various meteorological variables) is investi-
gated using global monthly mean climatological data from
two sources: (1) 1.125� � 1.125� European Centre for
Medium–Range Weather Forecasts (ECMWF) 40-year

Re-Analysis (ERA-40) climatology formed over the years
1957–2002, and (2) 1/2� � 1/2� Comprehensive Ocean
Atmosphere Data Set (COADS) climatology formed over
1945–1989. The latter is the new COADS climatology
based on the Atlas of Surface Marine Data, Supplement B
(http://www.nodc.noaa.gov/OC5/asmdnew.html). Details of
the archived ERA-40 (a numerical model product) and
observation–based COADS data set (constructed mainly
from ship observations) can be found in Kållberg et al.
[2004] and da Silva et al. [1994], respectively. For consis-
tency, climatological monthly means of Tair and Tsst from
ERA-40 and COADS are interpolated to a common grid of
1.0� � 1.0� for the analyses.
[9] We directly obtain monthly mean climatological

fields from COADS, while in the case of ERA-40 we
construct monthly climatological data of Tair and Tsst based
on 6 hourly model output covering the period 1979–2002.
The data set from the ERA-40 project covering the full
analysis period (1957–2002) is not used because earlier
time periods did not include many observational and satel-
lite–based data sets in the re-analysis. Note that Tair from
ERA-40 is at 2 m, while that from COADS is at 10 m above
the sea surface.
[10] Monthly mean climatologies of Tair–Tsst reveal

existence of a strong seasonal cycle in many regions as
evident from both data sets (Figure 2). For example, Tair is
as much as 5�C colder than Tsst along the western boun-
daries of ocean basin during February and November, and
Tair–Tsst can even be positive (>0�C) in May and August.
Substantial seasonal variability is also evident over most of
the Indian, Atlantic and Pacific Oceans. Globally, monthly
mean Tair–Tsst from both data sets agree with each other
reasonably well within 0.3�C (Table 1), indicating their
consistency for use in this study.
[11] Given the large variability in Tair–Tsst, we will first

investigate the relationship between Tair and Tsst. This is
done to determine the source of difference between the two.
Time series of Tair and Tsst at each ocean grid point from
ERA-40 and COADS are compared using various statistical
metrics: mean difference (MD), root-mean–square (RMS)
difference, correlation coefficient (R) and non–dimensional
skill score (SS). Let Xi (i = 1, 2,� � �, n) be the set of n Tsst
(reference) values, and let Yi (i = 1, 2,� � �, n) be the set of
n Tair values. Also let �X (�Y ) and sX (sY) be the means and
standard deviations of Tsst (Tair) values, respectively.
[12] Following Wilks [1995], the statistical metrics used

throughout the paper are as follows:

MD ¼ �Y � �X ; ð1Þ

RMS ¼ 1

n

Xn
i¼1

Yi � Xið Þ2
 !1=2

; ð2Þ

R ¼ 1

n

Xn
i¼1

Xi � �Xð Þ Yi � �Yð Þ=sXsY Þ; ð3Þ

SS ¼ R2 � R� sY=sXð Þ½ 	2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Bcond

� �Y � �Xð Þ=sX½ 	2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Buncond

; ð4Þ

Figure 1. Climatological mean air–sea surface tempera-
ture differences over the global ocean as obtained from
(a) ERA-40 and (b) COADS. Construction of both data sets
are described in section 2. Tair–Tsst values at high latitudes
(Arctic and Antarctic) will not be used in this paper due to
the existence of ice.
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where n is equal to 12 (January through December) at each
point of a 1� grid over the global ocean. In particular, MD is
the annual mean of Tair–Tsst. RMS can be considered as an
absolute measure of the distance between the Tair and Tsst
time series. The R value is a measure of the degree of linear
association between the two variables.

[13] SS in equation (4) is the fraction of variance in Tair
explained by Tsst minus two non-dimensional biases
(conditional bias, Bcond, and unconditional bias, Buncond)
which are not taken into account in the correlation
coefficient. Buncond (also called systematic bias) is a non-
dimensional measure of the difference between the mean
values of the Tair and Tsst time series, and Bcond is a

Figure 2. Climatological monthly mean air–sea surface temperature over the global ocean in February,
May, August and November. They are obtained from two data sets: (a) ERA-40 and (b) COADS. The
regions where ice exists are shown in gray. An ice land mask is used to determine the ice–free regions
over the global ocean as explained in the text.
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measure of the relative amplitude of the variability in the
two data sets. An examination of the SS formulation
reveals that R2 is equal to SS only when Bcond and Buncond

are zero. Because these two biases are never negative,
the R value can be considered to be a measure of the
‘‘potential’’ skill in using Tsst to estimate Tair, i.e., the
skill that one can obtain when there are no differences
between Tair and Tsst. A SS value of 1.0 indicates that
Tair and Tsst are identical, and SS can be negative if there
is no skill between Tair and Tsst.

3. Statistical Relationship Between Tair and Tsst

[14] Comparisons between Tair and Tsst (Figure 3) are
performed using the data sets (ERA-40 and COADS) and
statistical metrics, both of which are already described in
section 2. Regions where ice is present (e.g., high latitudes)
are masked and shown in gray. The ice–free regions over
the global ocean are determined from an ice land mask
[Reynolds et al., 2002]. The ice land mask is a function of
the ice analysis and may change periodically. For this
reason, a climatological mean of maximum ice extent for
the mask is used in all calculations.
[15] Ignoring high latitudes where sea–ice forms, the

mean difference fields are broadly similar to each other
with Tsst warmer than Tair (generally by <1�C) nearly
everywhere over the global ocean. Tsst is warmer because
solar radiation is absorbed more efficiently by the ocean
(and land) than by the atmosphere (i.e., troposphere is
heated from below). In addition, warm Tsst relative to the
subsurface usually gives stable stratification, while the
situation is opposite for the atmosphere. Having Tsst
warmer than Tair simply explains that average sensible
heat flux is almost always cooling (warming) the ocean
(atmosphere) on climatological timescales.
[16] A striking feature of Figure 3 is that relatively large

Tair–Tsst values (even as large as �5�C) do exist in mid-
latitudes along the western boundaries (Kuroshio and Gulf
Stream pathways), where the RMS difference between the
two is generally >3�C. Atmospheric advection of Tair and
oceanic advection of Tsst play an important role in

determining Tair–Tsst in these regions [Yasuda et al.,
2000; Qu et al., 2004; Dong and Kelly, 2004]. Overall,
the results from ERA-40 and COADS are similar except
for differences in some regions, such as the southwestern
Pacific, including some regions of the Indian Ocean and
high southern latitudes. Such discrepancies are generally
seen from maps of RMS, SS and Bcond. Not surprisingly,
the discrepancies tend to occur in regions of sparse
observations especially at high latitudes.
[17] There is a close relationship (large R) between Tair

and Tsst over the annual cycle in most regions (Figure 3).
However, there is almost no skill between the two in three
major regions: (i) most of the tropics, extending even to
mid– latitudes in some places, (ii) along the western
boundaries, and (iii) at high southern and North Atlantic
latitudes. The low skill in all three regions is due mainly
to large differences in the mean Tair and Tsst values
(i.e., large Buncond over the seasonal cycle). For COADS,
Bcond and low or even negative R values play a substantial
role in giving low or negative skill in the western equato-
rial Pacific warm pool and at high southern latitudes.
Overall, R values are generally very high (>0.9) over most
of the global ocean. However, further analysis reveals that
when Tair >27�C (i.e., regions around the equator) and Tair
<5�C (i.e., high southern latitudes), R values are typically
<0.5, especially for COADS.
[18] Based on the zonally averaged statistical metrics

between Tair and Tsst (Figure 4), it is further confirmed
that ERA-40 and COADS give similar results over most of
the global ocean. However, noticeable differences do show
up in SS values south of 40�S. As mentioned earlier, this is
due partly to the fact that the seasonal cycle of Tair and Tsst
(i.e., R) is quite different between the two data sets at those
latitude bands. The combination of different R and Bcond

values in the two data sets results in the large differences in
skill score south of 40�S.
[19] We also present scatter diagrams for Tair versus

Tsst, Tair versus Tair–Tsst, and Tsst versus Tair–Tsst
(Figure 5). This is done to further examine the relation-
ship between Tair and Tsst and decide which one (Tair or
Tsst) controls Tair–Tsst. There is a strong linear relation-
ship between Tair and Tsst with a R value >0.99 for both
ERA-40 and COADS over the global ocean. Unlike Tair
versus Tsst, there is no linear relationship between Tair
(or Tsst) and Tair–Tsst (R � 0), suggesting that neither
Tair nor Tsst modulates Tair–Tsst over the global ocean.
This simply indicates that, as expected, there must be
other factors that control Tair–Tsst, at least in some
regions of the global ocean.

4. Effects of Atmospheric Variables on Tair–Tsst

[20] The results in the preceding section demonstrate
that the climatological mean of Tair–Tsst must be con-
trolled by variables other than Tair or Tsst itself. Thus, our
focus here is to examine the possible effects of near–
surface atmospheric variables in driving the seasonal cycle
of Tair–Tsst. We consider several scalar atmospheric
variables: wind speed at 10 m above the sea surface, air
mixing ratio at 10 m above the sea surface, net radiation
(the total of net shortwave and net longwave radiation) at
the sea surface, Tair, Tsst and precipitation at the sea

Table 1. Global Average and Standard Deviations of Climatolo-

gical Mean Tair–Tssta

Month

Global Mean, �C Standard Dev., �C

ERA–40 COADS ERA-40 COADS

Jan �1.01 �0.69 1.05 1.06
Feb �0.99 �0.67 0.94 0.97
Mar �0.95 �0.65 0.67 0.68
Apr �0.91 �0.60 0.52 0.58
May �0.89 �0.61 0.58 0.69
Jun �0.89 �0.66 0.68 0.82
Jul �0.90 �0.64 0.70 0.71
Aug �0.89 �0.58 0.59 0.73
Sep �0.93 �0.58 0.46 0.60
Oct �0.95 �0.59 0.50 0.68
Nov �0.99 �0.61 0.72 0.82
Dec �1.01 �0.68 0.97 0.99
All �0.94 �0.63 0.70 0.78
aMean and standard deviation values are calculated only in ice– free

regions over the global ocean. The last row (All) denotes values calculated
over the seaonal cycle.

C05020 KARA ET AL.: AIR–SEA TEMPERATURE DIFFERENCES

4 of 18

C05020



Figure 3. Spatial maps of statistical metrics (see section 2) calculated between climatological monthly
means of Tair and Tsst over the global ocean. In the maps, except for the mean difference, white (red) is
intended to represent a tendency for good (poor) relationship between the two variables.
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surface. These variables are specifically chosen because
they are typically used as atmospheric forcing for coupled
ocean–atmosphere and ocean general circulations models
[e.g., Haidvogel and Bryan, 1992]. Monthly mean of these
variables obtained from the COADS and ERA-40 data sets
are interpolated to a common 1.0� � 1.0� global grid.
[21] Linear correlation coefficients between Tair–Tsst

and atmospheric forcing variables mentioned above are
calculated at each 1.0� � 1.0� grid box. They are then
mapped over the global ocean (Figure 6). Correlation values
for the seasonal cycle based on equation (3) in section 2
reveal a strong (or weak) positive (or negative) relationship
between Tair–Tsst and other variables. There is a strong and
positive relationship between Tair–Tsst and net solar radi-
ation at the sea surface, especially from the mid– to high
latitudes. Note that one must have at least an R value of
±0.53 for it to be statistically different from a zero correla-
tion (R = 0) at a 95% confidence level based on the
12 monthly values at each grid point over the global ocean.

[22] While there are relatively large differences in R values
from ERA-40 and COADS in some regions (e.g., southern
hemisphere), the fields are broadly similar over most of the
global ocean (Figure 6). In some regions, R values are high
even when there are noticeable differences in the magni-
tudes of atmospheric variables from the two data sets. This
is due to the fact that the shape and phase of the seasonal
cycles for all of the atmospheric variables, except precipi-
tation, are very similar illustrated for the latitude belt at
30�N in (Figure 7).
[23] The lowest and statistically insignificant R values

are generally found in the equatorial regions. These
statistically insignificant R values in comparison to those
at other latitudes are also evident from the zonally–
averaged correlation values (Figure 8). This is true
regardless of the atmospheric variable correlated with
Tair–Tsst. Therefore, it appears that none of the atmo-
spheric variables modulate Tair–Tsst in that region. On
the contrary, Tair–Tsst is generally driven by combination
of all atmospheric variables which may be linearly

Figure 4. Zonal averages of statistical metrics shown in Figure 3. Zonal averaging was performed at
each 1� latitude belt over the global ocean.
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dependent themselves along the western boundaries in-
cluding the Gulf Stream and Kuroshio current systems as
evident from the significantly large R values close to 1.
Wind speed at 10 m above the sea surface and net solar
radiation at the sea surface are the two main variables
tracked by Tair–Tsst at the subtropical northern and
southern latitudes.
[24] An interesting feature that is evident from Figure 6 is

that unlike other variables, wind speed and precipitation
have strong negative correlations with Tair–Tsst over most
of the global ocean. Figure 9 shows the cumulative fre-
quency of correlations between Tair–Tsst and all variables.
As mentioned previously, R is calculated over the seasonal

cycle. Overall, 38% (28%) of R values between Tair–Tsst
and wind speed are <�0.6 for ERA-40 (COADS), and
similarly 36% (28%) of R values between Tair–Tsst and
precipitation are <�0.6 for ERA-40 (COADS) over the
global ocean (Table 2).
[25] Median values are calculated to obtain a quantitative

analysis of correlations between Tair–Tsst and other varia-
bles over the global ocean. All R values are ordered from
lowest to highest value, and the middle value corresponding
to 50% is picked to find the median correlation for each
case. Median R using data from ERA-40 (COADS) is the
highest with a value of 0.84 (0.85) when Tair–Tsst is
correlated to net solar radiation at the sea surface (Table 3).
Since the median R values are not that large between Tair–
Tsst and all other variables, net solar radiation at the sea
surface plays an important role in maintaining the seasonal
cycle of Tair–Tsst over the global ocean. Regardless of
which data set (ERA-40 or COADS) is used for calculating
R, the median values are generally very close to each other,
except for wind speed, and global averages of R are almost
same (Table 3). This confirms the robustness and consis-
tency of the results.
[26] Using R values presented in Figure 6, we calculate

the overall percentage of variance explained by each
atmospheric variable. This is done to quantitatively iden-
tify the strongest of these predictors. Square of correlation
values (i.e., R2) between each atmospheric variable and
Tair–Tsst are first obtained at each grid point. The
maximum of them is then determined. This process is
repeated at each grid point over the global ocean, yielding
a map of the most important variables (Figure 10).
Overall, most of the variance in the seasonal cycle of
Tair–Tsst is again explained by the net solar radiation at
the sea surface for 50.8% (57.0%) of the global ocean,
when ERA-40 (COADS) data are used. There are some
regional differences though. For example, wind speed is
the most effective of the variables over 18.7% of the
global ocean when using ERA-40, while the percentage
amount drops to less than half that value (9.1%) for the
COADS data set. Other regional differences exist in both
data sets, especially at high southern latitudes where both
data sets suffer from a lack of quality observational data.

5. What Controls the Climatological Mean of
Tair–Tsst?

[27] As explained in section 4, in addition to net solar
radiation at the sea surface, Tair–Tsst is strongly correlated
with wind speed and air mixing ratio at 10 m, Tair and Tsst
depending on the region of the global ocean (Figure 8). In
most cases, there is more than one variable that has a direct
effect (or a linearly dependent effect) on Tair–Tsst because
the linear correlation values between Tair–Tsst and two or
more variables can be quite high for a given grid point over
most of the global ocean (see Figure 6).
[28] Given the results in section 4, two main questions

arise: (1) which atmospheric forcing variable is the most
important one driving the seasonal cycle of Tair–Tsst over
the global ocean?, and (2) what is the importance order of
each variable in affecting Tair–Tsst? To answer these
questions, we will build a prediction algorithm for Tair–

Figure 5. Scatterplots for Tair versus Tsst, Tair versus
Tair–Tsst and Tsst versus Tair–Tsst based on annual mean
values at each 1� bin over the global ocean. A linear
regression model for Tair–Tsst, fitted to the 31671 points,
gives constant slope of 1.0 for both data sets. Note that the
large spread between Tair and Tsst is mostly due to the
values along the western boundary currents. Linear
regression equations are Tsst = 0.93 + 1.00 Tair for ERA-40
and Tsst = 0.63 + 1.00 Tair for COADS.
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Figure 6. Correlation coefficients between Tair–Tsst and atmospheric variables calculated over the
seasonal cycle. Positive (negative) correlations are in red (blue).
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Tsst (section 5.1), and discuss importance order for each
atmospheric variable (section 5.2).
[29] The six variables discussed in section 4 are consi-

dered as potential predictors in this proposed prediction
algorithm. The methodology should have several characte-
ristics that ensure its usefulness and validity. Among the
most important of these considerations is that the metho-

dology allow for statistical significance testing by way of
cross validation and nonlinear relationships between pre-
dictors and Tair–Tsst. The methodology also needs to
provide useful and interpretable results. Methods such as
linear programming do not allow for validation of the
results, while purely statistical methods, such as regression

Figure 7. Climatological monthly mean time series for atmospheric forcing variables averaged over
the latitude belt of 30�N from top to bottom: wind speed at 10 m above the sea surface, net solar
radiation at the sea surface, vapor mixing ratio at 10 m above the sea surface, Tair, Tsst, and
precipitation (�109) at the sea surface. Results for ERA-40 (open circles) and COADS (filled squares)
are shown separately.
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and discriminant analysis do not easily allow for nonlinear
relationships [Breiman et al., 1984].

5.1. Prediction Methodology

[30] The importance order of atmospheric variables in
driving the seasonal cycle of Tair–Tsst is examined using
Generalized, Unbiased, Interaction Detection and Estima-
tion (GUIDE), which is a regression tree model [Loh, 2002].
A brief description of GUIDE is given in Appendix A. The
goal of a regression tree is to predict or explain the effect of

one or more variables on a dependent variable. GUIDE can
fit piecewise linear models for Tair–Tsst based on the
atmospheric variables. In essence, a regression tree is a
piecewise constant or piecewise linear estimate of a regres-
sion function, constructed by recursively partitioning the
data set and sample space.
[31] In the GUIDE analysis as applied to this investi-

gation, we use climatological monthly means of the
dependent variable (Tair–Tsst) and six predictors (wind
speed at 10 m above the sea surface, net solar radiation at

Figure 8. Zonal averages of correlation coefficients shown in Figure 6. Zonal averaging was performed
at each 1� latitude belt over the global ocean.
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the sea surface, air mixing ratio at 10 m, Tair, Tsst and
precipitation). These mean values are extracted from
ERA-40 and COADS at 1� � 1� grid boxes over the
global ocean. This is done for each month separately. We
also combine all the mean monthly data to examine

atmospheric variables which control the seasonal cycle
of Tair–Tsst.
[32] The values in each 1� grid bin are just the sum of the

values at grid points in the bin divided by the number of
such grid points. Thus, there is no areal averaging. In other
words, the assumption is that individual bins are small

Figure 9. Cumulative percentage of correlation coefficients between Tair–Tsst and other atmospheric
variables using monthly mean climatological data from ERA-40 and COADS. The median value is the
point intersecting the 50% line.
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enough that areal weighting is not needed within the bin.
However, the width (in longitude) of the bins is adjusted so
that the size of the bin in m2 is approximately constant.
Thus, at the equator each 1� bin is 1� by 1�, but starting at
60� it becomes 1� in latitude by 3� in longitude. At the pole,
essentially all the grid points would be one big bin (in
longitude). Since we masked values (i.e., did not use them)
at very high latitudes due to ice, weighting the data points
by areal coverage, i.e., having larger (smaller) values at the
equator (near the poles) is not a concern in this study.
[33] An example of how GUIDE proceeds is illustrated in

Figure 11. It shows a regression tree obtained using data
from ERA-40 in January. The tree is built on x and y, where
y is the variable Tair–Tsst, and the predictor variables are
x = (radflx, vapmix, wndspd, precip). The abbreviations are
defined in the figure caption. In this particular example, the
regression tree first partitions the results based on vapmix.
Observations with vapmix 
0.0048 kg kg�1 (4.8 g kg�1)
go to the left branch and otherwise to the right branch. A
least squares function linear in the four predictor variables is
fitted to the data in each leaf node of the tree. The average
value of Tair–Tsst in each leaf node is in italics (Figure 11).

The fact that the GUIDE tree first splits on vapmix (i.e.,
vapor mixing ratio at the sea surface) implies that the latter
has the largest nonlinear effect on the seasonal cycle of
Tair–Tsst in January. If vapmix is 
4.8 g kg�1, the variable
with the next largest nonlinear effect is wndspd (near-
surface wind speed). On the other hand, when vapmix is

Table 2. Percentages of Correlation Coefficients Shown in Figure 6a

Correlation Class Intervals Product Wind Speed Solar Rad. Mixing Ratio Tair Tsst Precipitation

�1.0 
 R < �0.9 ERA–40 0.0 0.0 0.0 0.0 0.0 0.0
COADS 0.0 0.0 0.0 0.0 0.0 0.0

�0.9 
 R < �0.8 ERA–40 13.3 0.1 0.9 0.5 3.8 9.7
COADS 11.1 0.0 0.0 0.2 0.8 8.7

�0.8 
 R < �0.7 ERA–40 12.3 0.4 2.4 1.6 5.0 14.5
COADS 8.1 0.1 0.8 0.6 3.2 9.1

�0.7 
 R < �0.6 ERA–40 12.4 0.6 2.2 2.2 3.8 11.3
COADS 8.3 0.1 1.5 1.1 3.5 9.8

�0.6 
 R < �0.5 ERA–40 8.5 0.6 2.4 2.7 3.2 7.8
COADS 7.0 0.2 1.9 1.5 3.9 9.0

�0.5 
 R < �0.4 ERA–40 5.8 1.1 2.7 2.8 2.7 6.0
COADS 6.2 0.3 2.3 1.7 3.9 8.4

�0.4 
 R < �0.3 ERA–40 3.9 1.4 2.2 2.9 2.4 4.9
COADS 6.4 0.6 2.6 2.0 3.9 7.7

�0.3 
 R < �0.2 ERA–40 3.3 1.5 2.1 3.0 2.0 4.1
COADS 5.9 0.9 2.8 2.1 3.9 7.2

�0.2 
 R < �0.1 ERA–40 2.9 1.6 2.1 2.8 1.9 3.6
COADS 6.0 1.4 2.9 2.3 4.0 6.7

�0.1 
 R < 0.0 ERA–40 2.9 1.9 2.1 2.4 2.3 3.2
COADS 5.1 1.9 3.2 2.6 4.1 6.2

0.0 
 R < 0.1 ERA–40 4.9 3.8 4.5 5.9 6.8 5.8
COADS 9.0 5.9 7.8 6.5 10.2 10.6

0.1 
 R < 0.2 ERA–40 2.2 2.0 3.3 3.9 5.2 3.1
COADS 4.0 3.6 4.8 4.5 7.6 4.4

0.2 
 R < 0.3 ERA–40 2.2 2.3 3.9 4.8 7.5 3.5
COADS 4.0 4.3 6.1 6.1 9.3 3.6

0.3 
 R < 0.4 ERA–40 2.3 2.8 5.1 6.5 8.2 3.4
COADS 3.9 4.9 7.5 8.4 10.6 3.1

0.4 
 R < 0.5 ERA–40 2.6 3.5 6.8 8.3 10.0 3.7
COADS 3.5 5.2 10.3 11.2 10.8 2.2

0.5 
 R < 0.6 ERA–40 3.0 4.5 8.4 8.9 10.9 4.2
COADS 3.3 5.4 13.0 14.2 8.5 1.5

0.6 
 R < 0.7 ERA–40 3.6 6.3 10.9 10.3 10.2 4.4
COADS 2.9 5.9 13.7 13.6 6.1 1.0

0.7 
 R < 0.8 ERA–40 4.4 9.8 14.2 11.9 8.9 3.7
COADS 2.8 7.7 10.1 10.8 4.2 0.5

0.8 
 R < 0.9 ERA–40 5.7 20.0 15.8 13.2 4.2 2.5
COADS 2.1 15.5 6.8 7.9 1.2 0.2

0.9 
 R < 1.0 ERA–40 3.8 35.8 8.0 5.4 1.0 0.6
COADS 0.4 36.1 1.9 2.7 0.3 0.1

aCorrelation coefficients are between Tair–Tsst and other atmospheric variables. The class intervals are 0.1 wide and range from �1.0
through 1.0. The highest percentage value is printed in boldface.

Table 3. Mean and Median Correlation Coefficients Over the

Global Oceana

Variable

Global Mean Global Median

ERA–40 COADS ERA–40 COADS

Wind speed �0.27 �0.26 �0.48 �0.29
Solar rad. 0.65 0.64 0.84 0.85
Mixing ratio 0.40 0.33 0.58 0.44
Tair 0.34 0.38 0.51 0.50
Tsst 0.17 0.10 0.38 0.21
Precipitation �0.28 �0.37 �0.41 �0.38

aCorrelation values are obtained from a least squares analysis with Tair–
Tsst as the dependent variable and six predictor variables, calculated in
ice– free regions over the global ocean.
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>4.8 g kg�1, radflx (net solar radiation) has the next largest
effect.
[34] The estimation procedure in Figure 11 begins by

creating an initial decision node and then adding further
nodes as constrained by the tree growth parameters.
Because it is always possible to obtain zero apparent
prediction error by partitioning the predictor space so
finely that each node contains just enough observations
to fit a multiple linear model perfectly, a criterion is
necessary to determine the optimal tree size. This is
achieved by first constructing an overly large tree and
then pruning it to maximize a cross–validated estimate of
expected square prediction error. Here pruning refers to an
objective tree selection procedure that finds the subtree
having the best estimated predictive accuracy.
[35] The regression tree in Figure 11 is obtained after

pruning. It is constructed recursively as follows. At each
node of the tree, a multiple linear regression model is
fitted to the data there. For each observation y, the model
gives a predicted value ŷ. Define the ‘‘residual’’ associated
with y by y � ŷ. If the model fits the data satisfactorily, a
plot of the residuals versus any predictor variable should
look like random noise.

[36] The tree in Figure 11 also provides empirical evi-
dence for nonlinearity between between Tair–Tsst and
atmospheric variables. The GUIDE algorithm fits a multiple
linear regression to the data in each node of the tree.
Therefore all predictor variables are treated equally, indi-
cating that there is no leading variable. If there is no
nonlinearity, a single multiple linear model would be
sufficient. This would give a tree with a single terminal
node (i.e., no splits). The fact the the tree has so many
branches indicates that a multiple linear model is inade-
quate. Each time the algorithm detects nonlinearity, it would
split the data into two subsets and try to fit a linear model
separately to each subset. If GUIDE is forced to use a single
predictor to fit each node (i.e., simple linear model), the tree
gets bigger. Not only are the slopes different in each node
(or segment), but even the selected predictors are different.
[37] Figure 12 shows the plots of residuals for each

predictor variable for the observations in the top node of
the tree. Vapor mixing ratio has the most significant
curvature test in terms of the chi–square test. Therefore, it
is selected to split the top node in the regression tree.

5.2. Importance of Atmospheric Forcing Variables

[38] The question of ‘‘which variable is the most impor-
tant for determining the magnitude of Tair–Tsst’’ can be
posed in two ways: (a) which variable has the smallest
prediction error if each variable is used singly to predict
Tair–Tsst?, and (b) which variable whose absence from a
model using all the predictors produces the largest increase
in prediction error? In (a) Tair–Tsst is considered to be a
function of only one variable (e.g., wind speed, net solar
radiation, etc., separately), while in (b) the dependence of
all variables except one on Tair–Tsst is taken into account.
In both cases, we use GUIDE to fit the necessary models
and compare its cross–validation estimates of prediction
mean square errors to rank the variables in order of
importance with respect to their effect on Tair–Tsst. Con-
fidence intervals for the estimated errors are used to
determine the statistical significance of the ranks.
[39] We first examine the importance of each variable

when it is used singly in predicting Tair–Tsst over the
seasonal cycle on climatological timescales. This is done by
combining all monthly mean data (from January through
December) for ERA-40 and COADS, separately. The anal-
yses for individual months are reported later.
[40] Table 4 gives the cross–validation estimates of

prediction mean squared error for each variable when it is
used singly to predict Tair–Tsst as mentioned in (a). Net
solar radiation at the sea surface is the most important
predictor for Tair–Tsst, because it yields the smallest
prediction mean squared error estimate of 0.40 for ERA-40
and 0.37 for COADS. It is followed by vapor mixing ratio,
Tair, Tsst, precipitation and wind speed when using the
ERA-40 data set. Since the error estimates for two variables
are not statistically significant if their 95% confidence
intervals overlap, we conclude from the table that net solar
radiation is the most important predictor and that the other
variables are less important, and they are tied among
themselves.
[41] To address question (b), we first fit a GUIDE model

using solar radiation, vapor mixing ratio, precipitation, and
wind speed as predictor variables. Then, a separate GUIDE

Figure 10. Regions showing which atmospheric variable
explains the largest percentage of the variance in Tair–Tsst
over the global ocean. They are determined from correlation
values shown in Figure 6, as explained in the text. Areal
percentage over the global ocean where the maximum
variance is explained by each atmospheric variable (wind
speed, net solar radiation, vapor mixing ratio, Tair, Tsst and
precipitation) is as follows: 18.7 (9.1), 50.8 (57.0), 12.2
(3.8), 3.2 (9.3), 6.5 (10.1), 10.7% (8.6%) for the ERA-40
(COADS) data set, respectively.
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Figure 12. Plots of residuals versus each predictor variable. The residuals are obtained from a piecewise
multiple linear GUIDE model shown in Figure 11. Based on the chi-squared test, vapor mixing ratio has
the most significant curvature, followed by the net solar radiation. Thus, vapor mixing ratio and net
mixing ratio are primary and secondary important variables for the prediction of Tair–Tsst. The other
two variables (wind speed and precipitation) have relatively less curvature, thereby less important.

Figure 11. Piecewise linear GUIDE regression tree model for Tair–Tsst based on the January data
from ERA-40. At each branch, an observation goes to the left if the stated condition is satisfied;
otherwise it goes to the right. The number (in italics) beneath each leaf node is the average value of
Tair–Tsst. The predictor variables are wndspd (wind speed at 10 m above the sea surface in m s�1),
radflx (net solar radiation at the sea surface in W m�2), vapmix (vapor mixing ratio at 10 m above the
sea surface in kg kg�1), and precip (precipitation in m s�1). Note that for this particular example, the
predictor picked as most important for prediction of Tair–Tsst is the vapor mixing ratio at 10 m above
the sea surface.
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model is fitted for each subset of three variables that leaves
out one. The reason for not using Tair and Tsst as predictors
is because Tair–Tsst is a linear function of these two
variables. Thus, Tair and Tsst would predict Tair–Tsst
perfectly. Since the prediction error for a model based on
a subset of variables is likely to be worse than that for a
model based on the whole set, we can use the increase in
prediction error due to variable exclusion to rank the
variables in their effect on Tair–Tsst.
[42] Table 5 shows the results, where the GUIDE

algorithm is used to fit the models. We see that deletion
of net solar radiation produces the largest increase in
estimated prediction mean squared error of 0.39 (0.38) for
ERA-40 (COADS). The variable with the second largest
increase is wind speed (0.35) for ERA-40 and vapor
mixing ratio (0.33) for COADS. From the confidence
intervals reported in the table, the difference between
solar radiation and wind speed is statistically significant
for ERA-40 but the difference between solar radiation and
vapor mixing ratio is not statistically significant. For both
data sets, there is no statistical significance in the diffe-
rences between the other two remaining variables. Thus,
the result for the second most important variable is
inconclusive. It is safe, however, to say that the most
important variable is net solar radiation, a conclusion that
matches our answer for question (a).
[43] We also investigate whether or not the most

important predictors which affect Tair–Tsst vary greatly
by month. The GUIDE models for Tair–Tsst are first
constructed using a single predictor variable for each
month. Estimated prediction mean squared errors obtained
using both the ERA-40 and COADS data sets reveal that,
compared with the other predictors, net solar radiation at
the sea surface is the most important variable which
drives Tair–Tsst for all months except March, April,
September, and October (Table 6). Similarly, when three

of the four predictors are used in the GUIDE model, the
exclusion of net solar radiation produced the largest
estimated prediction mean squared error for all months
except January–March, September, and October for both
the ERA-40 and COADS data sets (Table 7). No other
predictor variable exhibits the same consistent behavior.
[44] Finally, an examination of important atmospheric

variables which mainly regulate Tair–Tsst is performed
for two regions involving the major oceanic currents
systems (Kuroshio and Gulf Stream) where Tair–Tsst
experiences a large seasonal cycle, as discussed before
(see Figure 2). Clearly, these are regions where advection
by the major current systems could have a substantial
impact on Tair–Tsst [e.g., Dong and Kelly, 2004], but an
impact neglected in this study which is focussed on the
response to atmospheric forcing variables.
[45] Similar to values given in Table 5, we calculate

prediction mean squared error for each atmospheric variable
in predicting Tair–Tsst based on the GUIDE analysis in
both regions. The Kuroshio region is bounded by 25�N–
40�N and 120�E–160�E, and the Gulf Stream region is
bounded by 30�N—45�N and 40�W—80�W.
[46] Confidence intervals for each atmospheric variable

are given in Table 8. The most important variable in
predicting Tair–Tsst is still net solar radiation at the sea
surface. This is true in both regions based on both ERA-40
and COADS data sets. The importance of the net solar
radiation is even more significant when the relationship
between Tair–Tsst and other variables is examined for the
relatively small Kuroshio region in comparison to the
global ocean. This is because the estimated error without
net solar radiation (1.96) is more than 2 times larger than
the error (0.78) for the second most important variable,
mixing ratio. This is neither for the case for the Gulf
Stream region (Table 8) nor for the global ocean (Table 5).
We also note that precipitation seems to be the second

Table 4. Prediction of Mean Squared Error Using a Single Variable in GUIDEa

Deleted Variable

Results for ERA–40 Results for COADS

Estimated
Error

Confidence
Interval

Statistically
Significant?

Estimated
Error

Confidence
Interval

Statistically
Significant?

Wind speed 0.56 (0.54, 0.58) No 0.52 (0.50, 0.54) No
Solar radiation 0.40 (0.38, 0.42) Yes 0.37 (0.35, 0.39) Yes
Mixing ratio 0.53 (0.51, 0.55) No 0.53 (0.51, 0.55) No
Tair 0.54 (0.52, 0.56) No 0.53 (0.51, 0.55) No
Tsst 0.55 (0.53, 0.57) No 0.53 (0.51, 0.55) No
Precipitation 0.55 (0.53, 0.57) No 0.50 (0.48, 0.52) No
aCross-validation estimates of mean squared error are obtained when each variable is used as a sole predictor of Tair–Tsst in the

GUIDE models. Estimated errors are provided along with 95% confidence intervals for each predictor. The results for ERA-40 and
COADS are given separately.

Table 5. Cross–Validation Estimates of Prediction Mean Squared Errora

Deleted Variable

Results for ERA-40 Results for COADS

Estimated
Error

Confidence
Interval

Statistically
Significant?

Estimated
Error

Confidence
Interval

Statistically
Significant?

Solar radiation 0.39 (0.37, 0.41) Yes 0.38 (0.36, 0.40) Yes
Wind speed 0.35 (0.33, 0.37) Yes 0.30 (0.28, 0.32) No
Mixing ratio 0.33 (0.31, 0.35) No 0.33 (0.31, 0.35) No
Precipitation 0.30 (0.28, 0.32) No 0.32 (0.30, 0.34) No
aThe estimated prediction mean squared errors are obtained in each case by fitting a GUIDE model to all except the indicated

variable in column 1. A variable is considered statistically significant if its confidence interval does not overlap with that of the
variable with the lowest estimated error.

C05020 KARA ET AL.: AIR–SEA TEMPERATURE DIFFERENCES

15 of 18

C05020



most significant variable in controlling Tair–Tsst in the
Gulf Stream, a region where heat loss through evaporation
is significant.

6. Summary and Conclusions

[47] The relationship between the pairs of Tair versus Tsst
and Tair–Tsst versus four independent atmospheric forcing
variables (net solar radiation at the sea surface, wind speed,
vapor mixing ratio at 10 m above the sea surface, and
precipitation at the sea surface) is investigated. Our analysis
is based on global monthly mean climatologies of these
variables from two global data sets: ERA-40 and COADS.
[48] The results clearly reveal that while there is a strong

correlation between Tair and Tsst over the global ocean, the
relationship between the two is not as simple as can be
described by a linear least squares approach. The reason is
that skill is very low between Tair and Tsst due the large
unconditional bias (i.e., the bias due to the large differences
between mean Tair and Tsst) in some regions (e.g., equa-
torial regions).
[49] The atmospheric response to Tair–Tsst is generally a

function of more than one atmospheric forcing variable in
many regions over the global ocean on climatological
timescales. Therefore, a tree–based statistical methodology
that allows for nonlinear relationships between Tair–Tsst
and other atmospheric variables is used to determine the
most important of the variables considered in influencing
Tair–Tsst. The method fits piecewise linear models to Tair–
Tsst. Results using combined data (i.e., all 12 months) from
ERA-40 and COADS shows that net solar radiation at the
sea surface is the most important predictor for Tair–Tsst

over the seasonal cycle. The same variable is also picked
when a similar analysis is performed using data for each
month separately. In particular, net solar radiation at the sea
surface is found to be a crucial parameter in predicting
Tair–Tsst for May through August, November and December.
Both data sets (ERA-40 and COADS) yield almost identical
results, reinforcing the importance of net solar radiation as a
predictor for Tair–Tsst. They also indicate the robustness of
the relationship between Tair–Tsst and other atmospheric
variables. The results, as revealed by the regression tree
models, point to the importance of the large–scale environ-
ment in influencing Tair–Tsst. In addition, the methodology
presented in this paper shows that regression trees can be
applied to data with highly non–symmetric distributions
because the models do not require strong distributional
assumptions.
[50] The approach using the statistically–based GUIDE

algorithm should be more effective in combination with
other dynamical ocean models, such as the Princeton Ocean
Model (POM) and HYbrid Coordinate Ocean Model
(HYCOM). In addition, all of the analyses in this paper
are based on the assumption that Tair–Tsst is mainly driven
by local near–surface atmospheric variables. An examina-
tion of the effects of dynamical processes, such as oceanic
upwelling and advection in the atmosphere and the ocean in
driving the seasonal cycle of Tair–Tsst deserves a future
study. Such processes do not assume one–dimensional
oceanic response to the local atmospheric forcing.

Appendix A: GUIDE Algorithm

[51] A brief description of how the GUIDE algorithm
proceeds is provided here. While there are other tree–based
prediction algorithms [e.g., Breiman et al., 1984; Alexander

Table 6. Estimates of Prediction Mean Squared Error by Month

Based on a Single Predictora

ERA-40 Wind Speed Solar Radiation Mixing Ratio Precipitation

Jan 1.62 ± 0.10 0.99 ± 0.06 1.26 ± 0.06 1.63 ± 0.10
Feb 1.16 ± 0.06 0.79 ± 0.04 0.93 ± 0.05 1.11 ± 0.06
Mar 0.46 ± 0.02 0.45 ± 0.02 0.45 ± 0.03 0.42 ± 0.02
Apr 0.25 ± 0.01 0.24 ± 0.01 0.20 ± 0.01 0.27 ± 0.01
May 0.42 ± 0.01 0.25 ± 0.01 0.39 ± 0.01 0.43 ± 0.01
Jun 0.54 ± 0.02 0.28 ± 0.01 0.57 ± 0.02 0.57 ± 0.02
Jul 0.35 ± 0.01 0.25 ± 0.01 0.38 ± 0.01 0.34 ± 0.01
Aug 0.35 ± 0.01 0.26 ± 0.01 0.33 ± 0.01 0.32 ± 0.01
Sep 0.28 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.26 ± 0.01
Oct 0.31 ± 0.01 0.30 ± 0.01 0.29 ± 0.01 0.29 ± 0.01
Nov 0.60 ± 0.03 0.40 ± 0.02 0.58 ± 0.03 0.58 ± 0.03
Dec 1.07 ± 0.06 0.66 ± 0.04 0.93 ± 0.05 1.06 ± 0.06

COADS Wind Speed Solar Radiation Mixing Ratio Precipitation

Jan 0.90 ± 0.05 0.47 ± 0.02 0.90 ± 0.04 0.92 ± 0.04
Feb 0.69 ± 0.03 0.50 ± 0.02 0.70 ± 0.03 0.72 ± 0.03
Mar 0.33 ± 0.01 0.30 ± 0.01 0.32 ± 0.01 0.30 ± 0.01
Apr 0.24 ± 0.01 0.21 ± 0.01 0.20 ± 0.01 0.23 ± 0.01
May 0.44 ± 0.02 0.34 ± 0.03 0.39 ± 0.02 0.41 ± 0.02
Jun 0.49 ± 0.01 0.32 ± 0.01 0.49 ± 0.01 0.48 ± 0.01
Jul 0.45 ± 0.01 0.30 ± 0.01 0.46 ± 0.01 0.42 ± 0.01
Aug 0.44 ± 0.01 0.35 ± 0.01 0.42 ± 0.01 0.41 ± 0.01
Sep 0.31 ± 0.01 0.28 ± 0.01 0.30 ± 0.01 0.28 ± 0.01
Oct 0.38 ± 0.02 0.34 ± 0.01 0.34 ± 0.01 0.36 ± 0.02
Nov 0.61 ± 0.02 0.35 ± 0.01 0.60 ± 0.02 0.56 ± 0.02
Dec 0.88 ± 0.04 0.43 ± 0.02 0.89 ± 0.04 0.82 ± 0.03

aCross–validation estimates of prediction means squared error, when a
single predictor variable is used in the GUIDE analysis. The values are
given for ERA-40 and COADS data sets separately. Standard errors (±) are
also provided. Each 95% confidence interval is obtained by taking two
times the standard error around the estimate.

Table 7. Estimated Increase in Prediction Mean Squared Error

From a Multipredictor Modela

ERA-40 Wind Speed Solar Radiation Mixing Ratio Precipitation

Jan 0.46 ± 0.03 0.62 ± 0.03 0.73 ± 0.05 0.52 ± 0.03
Feb 0.39 ± 0.02 0.44 ± 0.03 0.52 ± 0.03 0.48 ± 0.04
Mar 0.24 ± 0.02 0.20 ± 0.01 0.22 ± 0.01 0.28 ± 0.01
Apr 0.13 ± 0.01 0.15 ± 0.01 0.15 ± 0.01 0.13 ± 0.01
May 0.14 ± 0.01 0.24 ± 0.01 0.16 ± 0.01 0.13 ± 0.01
Jun 0.18 ± 0.01 0.33 ± 0.02 0.18 ± 0.01 0.13 ± 0.00
Jul 0.14 ± 0.00 0.20 ± 0.01 0.15 ± 0.00 0.12 ± 0.00
Aug 0.12 ± 0.01 0.17 ± 0.01 0.16 ± 0.00 0.11 ± 0.00
Sep 0.17 ± 0.00 0.18 ± 0.00 0.19 ± 0.00 0.19 ± 0.00
Oct 0.18 ± 0.01 0.19 ± 0.01 0.20 ± 0.01 0.21 ± 0.01
Nov 0.23 ± 0.01 0.33 ± 0.02 0.26 ± 0.01 0.23 ± 0.01
Dec 0.36 ± 0.02 0.48 ± 0.03 0.48 ± 0.02 0.40 ± 0.02

COADS Wind Speed Solar Radiation Mixing Ratio Precipitation

Jan 0.33 ± 0.02 0.34 ± 0.02 0.26 ± 0.01 0.38 ± 0.02
Feb 0.30 ± 0.02 0.30 ± 0.01 0.25 ± 0.01 0.34 ± 0.02
Mar 0.16 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.22 ± 0.01
Apr 0.14 ± 0.01 0.15 ± 0.01 0.15 ± 0.01 0.14 ± 0.01
May 0.18 ± 0.02 0.29 ± 0.02 0.27 ± 0.02 0.18 ± 0.01
Jun 0.17 ± 0.01 0.33 ± 0.01 0.21 ± 0.01 0.18 ± 0.01
Jul 0.15 ± 0.00 0.29 ± 0.01 0.20 ± 0.01 0.15 ± 0.00
Aug 0.22 ± 0.01 0.33 ± 0.01 0.27 ± 0.01 0.23 ± 0.01
Sep 0.22 ± 0.01 0.24 ± 0.01 0.23 ± 0.01 0.22 ± 0.01
Oct 0.24 ± 0.01 0.26 ± 0.01 0.29 ± 0.02 0.24 ± 0.01
Nov 0.23 ± 0.01 0.41 ± 0.02 0.26 ± 0.01 0.23 ± 0.01
Dec 0.32 ± 0.02 0.46 ± 0.02 0.29 ± 0.01 0.31 ± 0.01

aCross-validation estimates of increase are shown by month, using
GUIDE with all except one of the predictor variables.
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and Grimshaw, 1996; Ripley, 1996], GUIDE, as used in this
paper has advantages over them because of three main
reasons: (1) it has a negligible selection bias, (2) it includes
categorical predictor variables, and (3) it is sensitive to
pairwise interactions between regressor variables.
[52] Suppose that a random observation (x, y) is genera-

ted by the relation y = f (x) + e, where f (x) is an unknown
function, e represents random variation with zero expecta-
tion, and x may be a vector of predictor variables x = (x1, x2,
. . ., xk). In this context, f is called a regression function.
[53] Given a data set {(x1, y1), (x2, y2),. . ., (xn, yn)} of n

observations, there are many methods of estimating f.
Clearly, it is desirable to choose an estimate f̂ such that
the expected square prediction error E{y* � f̂ (x*)}2 is
small, where (x*, y*) denotes a future observation that is not
in the data used to construct f̂ .
[54] If f is known to be a linear function of x1, x2, . . ., xk,

the least squares method often yields an estimate with
excellent expected square prediction error. But the latter
can be very large if f is not a linear function. In that case, a
nonparametric method that adapts to the complexity of f is
usually preferred. One such method is GUIDE which yields
a piecewise linear estimate of f. Besides being completely
automatic and adaptive, GUIDE has the unique feature that
the data partitions defining the piecewise linear estimate can
be displayed graphically as a binary decision tree.
[55] The algorithm aims to identify the predictor variable

whose plot exhibits the highest degree of non–randomness,
because this variable is most likely to have a nonlinear
effect on the dependent variable. GUIDE employs the chi–
square test [e.g., Jaisingh and Rozakis, 2000] to measure the
degree of nonlinearity in each predictor variable. Specifi-
cally, it first groups the predictor values into four groups at
the sample quartiles and then cross–tabulates the grouped
values with the signs of the residuals. The predictor variable
yielding the most significant chi–square statistic is selected
to split the node with an inequality of the form x 
 c. Each
value of c divides the data into two subsets and a multiple
linear regression model is fitted to the data in each subset.
The value of c that yields the smallest total sum of squared
residuals in these two regression models is selected as the
best split of the node. Complete details on the curvature test
and the pruning algorithm are given in Loh [2002].
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