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a b s t r a c t

To develop a capable ensemble-based scheme for operationally assimilating Argo profile observations
into a hybrid coordinate ocean model (HYCOM), we compared some different ensemble optimal interpo-
lation (EnOI) schemes, which can be divided into two different kinds. The first kind is straightforward, i.e.,
updating the model variables (i.e., layer thickness, layer velocity and layer temperature/salinity) at the
same time from the temperature and salinity profiles observed from Argo floats. In the second kind of
schemes (will be referred as the modified schemes), which are based on Thacker and Esenkov (2002),
the Argo profiles are first converted to the ‘‘observations” of layer thicknesses and they are assimilated
to adjust the model layer thickness and model velocity fields. Then the T (or S) profiles are assimilated
to adjust the model layer temperatures (or salinities), followed by deriving the model layer salinity (or
temperature) from the equation of seawater state.

In this study we showed that the two kinds of EnOI schemes can be implemented in various setups.
Firstly for the straightforward schemes an analysis can be done using the thinned (to model layers) obser-
vations of Argo profiles or using the full vertical information provided by the Argo profiles. Secondly one
can make an analysis applying or not applying localization vertically. Thirdly for the modified schemes
either the temperature or the salinity field can be diagnosed. Then we designed six assimilation experi-
ments, each is attached to a different setup in order to test and compare their performances. In all exper-
iments, Argo profiles were assimilated into HYCOM in the Pacific for a four-year period (January, 2004–
December, 2007). A large amount of Argo profiles were withheld to validate the assimilation results. The
results show the significant improvement by the modified schemes over the straightforward schemes.
The best setup of the modified scheme is to diagnose the temperature and to apply the vertical localiza-
tion at the step of assimilating the layer temperatures.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Outputs from any ocean circulation models merely represent
responses of their inputs such as the initial conditions, atmo-
spheric forcing and lateral boundary conditions based on these
models dynamics. These model outputs may not represent the real
world ocean due to incorrect inputs and missing physical processes
in their dynamics. One way to control the ocean model error is data
assimilation that uses observations to correct model states based
on either statistical or variational methods (e.g., Malanotte-Rizzoli,
1996; Thacker and Long, 1988). As a statistical method, ensemble
Kalman filter (EnKF) and other ensemble-based data assimilation
schemes have been applied to solve various oceanic data assimila-
tion problems (Evensen, 1994, 2003, 2004; Bertino et al., 2003;

Lisæter et al., 2003, 2007; Oke et al., 2005, 2008). Among these
ensemble-based methods, ensemble optimal interpolation (EnOI)
is computationally very efficient (Oke et al. 2002; Evensen, 2003;
Oke et al., 2005; Counillon and Bertino, 2009) because it uses a sta-
tionary ensemble and requires only a single model forecast. Its
cheap requirement of computation resources makes EnOI more
favorable for practical applications (Oke et al., 2008; Counillon
and Bertino, 2009).

Argo is a global array of more than 3000 free-drifting profiling
floats that measures temperature and salinity of the upper
2000 m of the ocean. This allows, for the first time, continuous
monitoring of the temperature, salinity and even velocity of the
upper ocean (Xie and Zhu, 2009). This rich data source provides a
major data input for any large-scale or regional ocean data assim-
ilation systems (Chassignet et al., 2007; Martin et al., 2007; Oke
et al., 2008).

The Hybrid-Coordinate Oceanographic Model (HYCOM) (Bleck
2002; Bleck and Chassignet, 1994; Chassignet et al., 2006, 2007)
takes a hybrid approach to vertical discretization. HYCOM
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combines three approaches: isopycnal (density tracking) layers ,
which are best in the deep stratified ocean, z-levels (constant fixed
depths), which are best used to provide high vertical resolution near
the surface within the mixed layer, and r-levels, which are often the
best choice in shallow coastal regions (Griffies et al., 2000; Chassig-
net et al., 2003). Still under development, HYCOM has been applied
at different scales from global ocean, basins to coastal and shelf
oceans (e.g., Shaji et al., 2005; Winther and Evensen, 2006; Kara
et al., 2008). However, HYCOM is in essence formulated in terms of
density, and only two of the three variables: temperature, potential
density and salinity are independent. So how to assimilate the pro-
file data into HYCOM becomes crucial for operational ocean fore-
casting and needs to receive more attention, while it may not be
so prominent for other models. Thacker and Esenkov (2002, hereaf-
ter TE) described a method to assimilate expendable bathythermo-
graphic (XBT) data into HYCOM under a framework of three
dimensional variational (3DVAR). First, the XBT data are reduced
to information about the thickness, potential density and tempera-
ture in the model layers, based on a companion salinity profile from
climatological data or model simulation. Then, these data are assim-
ilated via optimal interpolation, and the velocity fields are geo-
strophically adjusted by the corrected mass distribution. Thacker
et al. (2004) demonstrated the significant improvement by assimi-
lating XBT data in Atlantic using these analyses as initial conditions.
In order to expose a practical and reasonable implementation to
assimilate Argo data into HYCOM, it is necessary to wholly compare
the possible different schemes. Meanwhile the existing schemes still
have problems to be solved, for example, in the TE scheme, the ques-
tion of how to correct the model layers below the observed profiles
needs to be carefully dealt with.

In this paper we focus on the comparison of the different EnOI
schemes assimilating Argo data into HYCOM. The straightforward
way to assimilate a pair of Argo temperature and salinity profiles
T(z), S(z) is via an observation operator that transforms the layer
thicknesses, layer temperatures and layer salinities to vertical pro-
files T(z) and S(z) as functions of depth using the vertical (spline)
interpolation. The observation operator is a highly non-linear func-
tion of layer thicknesses. As a result, the linear Kalman update
equation used in EnKF and EnOI may not deliver the optimal solu-
tion. This problem was identified by TE as ‘‘Within the context of
HYCOM, when correcting temperature, it is necessary to decide
whether to move interfaces, keeping potential densities of the
layers unchanged, or to correct the densities, leaving the interfaces
unchanged.” Central to their scheme is to assimilate the layer
thickness ‘‘observations” that can be obtained by estimation of
companion profiles of salinity and potential density. Based on the
background error covariance in EnOI, even the forecasted layer
thicknesses below the maximum depth of Argo profile could be cor-
rected by the ‘‘observed” layer thicknesses. In this study, some EnOI
schemes based on the straightforward and the TE methods assimi-
lating Argo profiles are designed and implemented in the Pacific
aiming at selecting a capable one for operational applications.

This paper is arranged as follows. In Section 2, we briefly de-
scribe the HYCOM and its configuration used in this study. In Sec-
tion 3, the EnOI schemes for assimilating Argo profiles are
described. Then a vertical localization scheme is introduced in Sec-
tion 4. Section 5 describes the design of the assimilation experi-
ments to evaluate these schemes in the Pacific from 2004 to
2007. Comparisons of results are given in Section 6. Finally, Section
7 gives our conclusions and discussions.

2. HYCOM and its configuration

The HYCOM is a primitive equation, general circulation model
which is evolved from the Miami Isopycnic Coordinate Ocean Model

(MICOM; Bleck and Smith 1990). The MICOM uses potential density
as the vertical coordinate. The main advantage of the isopycnal coor-
dinates is their ability to maintain the properties of water masses
which do not communicate directly with the mixed layer. In HY-
COM, with the advection of layer thicknesses in the continuity equa-
tion, the isopycnal vertical coordinates smoothly transit to z-
coordinates in the weakly stratified upper-ocean mixed layer, and
to terrain-following sigma coordinates in shallow water regions
(e.g., Bleck, 2002; Chassignet et al. 2003, 2007). This treatment of
the vertical coordinate not only maintains the remarkable advanta-
ges of isopycnal model in stratified regions, but also provides an abil-
ity of better representation near the surface and in shallow coastal
areas with more reasonable vertical resolution. Hence it can robustly
depict the dynamical processes of upper ocean physics, and also be
suitable for operational ocean modelling.

The computational domain, in this study, spans the Pacific
Ocean from 95�E to 70�W in zonal, and from 28�S to 52�N in merid-
ional. The model grid uses the conformal mapping tool of Bentsen
et al. (1999). In the present configuration, the grid sizes are ranging
from 42 to 72 km in the Pacific. The HYCOM has 22 vertical levels,
and the target potential density values range from 18.00 to 27.84
with a few light target density values that ensure a minimum of
four fixed-depth levels near the surface of the ocean (e.g., Wan
et al., 2008). The vertical mixing scheme is the K-profile parame-
terization (KPP; Large et al., 1994). The bottom topography is based
on the Earth Topography 5 (ETOPO5) which is a gridded dataset
with the resolution of 5-min � 5-min.

The model is driven from the state of rest by the monthly clima-
tology forcing fields, and has a 20-year spin-up. Then from January
1981 to December 2003, it is forced by the high-frequency (with
6 h) forcing fields including temperature, wind and humidity,
which were taken from the European Center for Medium-Range
Weather Forecasting (ECMWF). Other inputs are based on climatol-
ogy data such as the Comprehensive Ocean and Atmosphere
Dataset (COADS, Slutz et al., 1985) and the precipitation dataset
(Legates and Willmott, 1990). The lateral boundary conditions
are relaxed towards the Generalized Digital Environmental Model
oceanic climatology version 3.0 (GDEM-V3.0, Ref. Teague et al.,
1990; Fox et al., 2002) with the scales of ten grid cells and 30 days.

Fig. 1 shows the averaged temperature and salinity along 165�E
for the upper 1000 m from January 1981 to December 2002 simu-
lated by HYCOM, along with the climatology of World Ocean Atlas
2001 (WOA01, Conkright et al., 2002). The stratification of tempera-
ture and salinity are simulated quite well as Fig. 1. Along 165�E, the
pattern of temperature is very close to that of WOA01, and the sim-
ulated high-salinity cores at the subsurface are consistent with the
climatology. However, it is noticeable that the warm pool in the
tropical Pacific is so strong that its thickness is greater than the cli-
matology, and that the warm water at 30�N is also deeper than that
of WOA01. Near the equator, the high-salinity values at the subsur-
face are less than that of WOA01. In the northern Pacific around
40�N, the extent of the cold, fresher water appears smaller than that
of WOA01. As above the distinct shortages about the stratified model
states of temperature and salinity, assimilating Argo profiles would
be an effective way to improve their simulations.

3. EnOI schemes for Argo profiles

3.1. Straightforward definitions of innovation vectors for Argo data

Most data assimilation schemes can be briefly written as.

Xa ¼ Xb þ KðYo � HXbÞ ð1Þ

using the conventional notations and explanations (see Evensen
(2003) for details). Any data assimilation schemes start with the
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calculation of the model-observation difference, or the innovation
vector Yo�HXb. In the context of HYCOM, the calculation of the
innovation vector for Argo (or XBT) data is not trivial.

Argo floats provide almost vertically continuous measurements
of temperature and salinity profiles. For simplicity we write these
observations as Tob(z) and Sob(z) where the depth z ranges from
near surface to 2000 m (or to 1000 m for some types of floats).
For an ocean model, the model temperature (T1, T2, . . . , Tnk)T and
salinity (S1, S2, . . . , Snk)T are calculated at some certain levels or lay-
ers with depth of z1, z2, . . . , znk respectively if ignoring the horizon-
tal grid points. Note that these depths are varying with time in a
layered model while is fixed in a z-coordinate level model. Here
the superscript T indicates the vector transpose. There are gener-
ally two straightforward ways to calculate the innovation vector.
First, one defines the innovation vector in the model space. In this
case, the observations Tob(z) and Sob(z) are being fixed to the model
levels or layers either by averaging observations or simply select-
ing the best quality observations within the associated model lev-
els or layers. We write the subsampled Argo observations as
(Tob

1, Tob
2, . . . ,Tob

nk)T and (Sob
1, Sob

2, . . . , Sob
nk)T. Therefore the inno-

vation vectors can be calculated as (T1–Tob
1, T2–Tob

2, . . . , Tnk –
Tob

nk)T and (S1–Sob
1, S2–Sob

2, . . . , Snk–Sob
nk)T. For a layered model

such as HYCOM, this definition of innovation will create a problem
that is already mentioned by TE and quoted in the introduction of
the paper.

The second way is to define the innovation vector in the obser-
vational space. In this case the discrete model temperature and
salinity values (T1, T2, . . . , Tnk)T and (S1, S2, . . . , Snk)T are interpo-
lated to the vertically continuous function of z. The interpolation
operator that transforms the model variables to the observational
space is a special example of observation operators denoted by
H. Fig. 2 shows a two-level or two-layer configuration. The model
level/layer thicknesses are d1 and d2 while the level/layer-averaged
temperatures are T1 and T2. To make it simpler, we temporarily as-
sume the level/layer-averaged temperature equals to the tempera-
ture at the middle point of the level/layer. In this case, when
defining the innovation vector in the observational space and using
the linear interpolation (blue line in Fig. 2) the observation opera-
tor H is defined as:

TðzÞ ¼ Hðd1;d2; T1; T2Þ
¼ ½ð2z� d1ÞT2 þ ð2d1 þ d2 � 2zÞT1�=ðd1 þ d2Þ:

To further simplify the problem we assume the total depth is
fixed, i.e., d1 + d2 = h, then it is written as

TðzÞ ¼ Hðd1;d2; T1; T2Þ ¼ ½ð2z� d1ÞT2 þ ð2d1 þ d2 � 2zÞT1�=h: ð2Þ

In a z-level model, the level thicknesses of d1 and d2 always are
fixed. From Eq. (2), the observation operator is a linear function of
model variables. However, in isopycnal layer model like HYCOM,
the observation operators will be different. The prognostic vari-
ables in HYCOM include layer thickness, layer temperature (or
salinity) and layer velocity. Clearly this operator is non-linear func-
tion of the layer temperatures and the layer thicknesses due to the
multiplication terms d1T1 and d1T2 in Eq. (2). For realistic applica-
tions, the high-order spline interpolation rather than the linear
interpolation is more suitable and can create stronger non-linear
observation operator than the linear interpolation. The similar
problem is held for salinity.

3.2. EnOI

In EnOI, the analysis can be calculated using Eq. (1) with the
gain matrix K of the form:

Fig. 1. Mean temperature and salinity along 165�E for (a) model simulated temperature averaged over 1981–2002 period, (b) model simulated salinity averaged over 1981–
2002 period, (c) temperature climatology from WOA01 and (d) salinity climatology from WOA01.

Fig. 2. Schematic of a simplified HYCOM configuration of two layers. Blue line is the
linearly interpolated temperature profile based on the model temperature defined at
the middle points of two layers, and red line represents the observed temperature
profile. (For interpretation of references to color in this figure legend, the reader is
referred to the web version of the article.)

J. Xie, J. Zhu / Ocean Modelling 33 (2010) 283–298 285
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K ¼ aðr � PbÞHT½aHðr � PbÞHT þ R��1
: ð3Þ

In Eq. (3), Pb is the background error covariance (BEC) and R is the
observation error covariance. The term of a is a scalar that can tune
the magnitude of the analysis increment; r is a correlation function
for localization. See more about the localization in the next section.
Eq. (3) is essentially used by most statistical data assimilation
schemes such as optimal interpolation, Kalman filter, EnKF and
EnOI. In this paper we use only EnOI in which the Pb is estimated by

Pb ¼ A0A0T=ðN � 1Þ; ð4Þ

where N is the ensemble size and A0 is an ensemble of model anom-
alies. These anomalies, often taken from a long-term model run
(Evensen, 2003) or spin-up run (Oke et al., 2008), usually represent
model variability of certain scales. In this study, the ensemble set
(120 members) is taken from model snapshots from 1981 to 2002.

There are many benefits in using the model-based covariances
of EnOI. The rich data provided by the model results allow describ-
ing the spatial-varying correlation length-scales and the aniso-
tropic nature of ocean circulation. The covariance of different
model variables from an ensemble of model simulations can also
keep the analysis dynamically consistent.

3.3. Straightforward EnOI schemes

Based on the two straightforward definitions of innovation vec-
tors, we can implement EnOI using the following schemes which
are referred as the straightforward EnOI schemes in this paper.

Write the model variables at the isopycnal layers as X = (di, Ti, -
Si, Ui, Vi; i = 1, . . . , nk)T, where Ui, Vi are layer velocity components.
The straightforward scheme to assimilate Argo into HYCOM is to
update all model variables (di, Ti, Si, Ui, Vi; i = 1, . . . , nk)T at a single
step by Eq. (1) with the gain matrix calculated by (3) and (4).
The innovation vector is write as

Hðdi; Ti; Si; i ¼ 1; . . . ;nkÞT � ðTobðzÞ; SobðzÞÞT; ð5Þ

where the observation operator is the spline or other interpolations
from the model layer temperature and salinity to the observational
space. This scheme is carried out in the experiment of EXP1A in this
paper (Sections 5 and 6).

We also can thin or average the Tob(z), Sob(z) to model layers,
yielding an observation vector (Ti

ob, Si
ob, i = 1, . . . , nk)T. Then the

innovation vector is simplified as,

Ti � Tob
i ; Si � Sob

i

� �T
ð6Þ

and this assimilation scheme is carried out in the experiment of
EXP1B later (Sections 5 and 6).

3.4. Modified EnOI schemes based on TE

As mentioned in Subsection 3.1, the straightforward EnOI
schemes have drawbacks. Therefore we alternatively introduce
several modified EnOI schemes based on TE as follows:

(i) First, the Argo profiles of T and S are converted into the infor-
mation about the thickness, temperature, salinity and poten-
tial density of model layers. Then, the ‘‘observed” layer
thicknesses (dob

i ; i = 1, . . . , nk)T are assimilated, and the
analysis update is carried out just for (di, Ui, Vi; i = 1, . . . , nk)T.
To avoid the analyzed layer thicknesses being negative occa-
sionally, the extra procedure reanalyzing the layer thickness
is imposed based on a scheme of Thacker (2007). Although
the temperatures and salinities of model layers are not
adjusted, their vertical profiles as functions of depth are
changed in fact.

(ii) Further respectively assimilating the temperature and salin-
ity profiles, and just adjusting the corresponding variable at
model layer by EnOI. In this step, the observation operator
can be simplified as Eq. (6) with the previously adjusted
layer thickness.

(iii) At the last step one of salinity or temperature, is derived
from the equation of state of seawater below the mixed
layer.

Based on the above procedures, four schemes can be designed
and implemented. In the experiment EXP2T, the layer temperature
is derived from the equation of state of seawater below the mixed
layer at the step (iii). In the experiment EXP2S, the layer salinity is
derived from the equation of state of seawater below the mixed
layer. If we further apply the vertical localization (described in next
section) at the step (ii), the two more experiments EXP2Tv and
EXP2Sv are designed.

4. Localizations

Ensemble-based methods could suffer from the effect of the sam-
pling error. Many studies have suggested that the so-called localiza-
tion technique is a feasible solution to reduce the effect of sampling
error for applications of an EnKF (e.g., Hamill et al., 2001) and EnOI
(Oke et al., 2005), especially when the ensemble size is small. Local-
ization aims to delete those long distance correlations in the gain
matrix, and thus to limit the influence of a single observation by
the Kalman update equation within a fixed region around the obser-
vation location. Localization also can increase the rank of the fore-
cast error covariance and improve the performance (Oke et al.,
2002; Hunt et al., 2007). However the dynamical balance of analyses
could be degraded by applying localization (Mitchell et al., 2002;
Oke et al., 2005). For most existing applications of EnKF and EnOI
to ocean data assimilation problems, localization is only applied to
horizontal direction such as in the Topaz system (Bertino and Even-
sen, 2002) and the Bluelink ocean data assimilation system (Oke
et al., 2008). Here we attempt to apply localization in the vertical
direction, in order to filter the spurious correlations since a limited
number of ensemble members are used.

4.1. Horizontal localization

Usually localization is achieved by two ways: masking of a cor-
relation matrix with the covariance model generated by the
ensemble (e.g., Hamill et al., 2001; Houtekamer and Mitchell,
2001; Oke et al., 2008) and applying of filters locally in physical
space (e.g., Ott et al., 2004). Just the operation r� in the formula
(4) shows an implementation of localization by a Schur product.
The notation r � Pb denotes the Schur product of a correlation ma-
trix r with a covariance matrix Pb. Element rij is calculated as a
correlation function applied to the Euclidean distance in R3 be-
tween points xi and xj (Hamill et al., 2001; Houtekamer and Mitch-
ell, 2001). The correlation r is further separated into a horizontal
component (rh) and a vertical component (rv), and can be pre-
sented as r ¼ rhrv .

To define the horizontal correlation matrix rh, we used a fifth-
order function like in Gaspari and Cohn (1999) as following:

rhðlij;LÞ ¼

�1
4

lij
L

� �5
þ 1

2
lij
L

� �4
þ 5

8
lij
L

� �3
� 5

3
lij
L

� �2
þ1; 06 lij6 L

1
12

lij
L

� �5
� 1

2
lij
L

� �4
þ 5

8
lij
L

� �3
þ 5

3
lij
L

� �2
�5 lij

L

� �
þ4� 2

3
lij
L

� ��1
; L< lij 62L

0; lij >2L

8>>>><
>>>>:

ð7Þ

which is similar the formulation of Hamill et al. (2001). Define lij to
be the Euclidean distance between any two arbitrary points in
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horizontal, and set an influence scale of L = 400 km to all model
state variables. It is similar to a Gaussian function in physical space
but more compact. The localized correlation function r forces the
BECs to decrease to exactly zero when the distances of lij are over
the distance of 800 km from an observation location. By this means,
the spurious long-range covariances occurring when a small ensem-
ble is used could be reduced effectively.

4.2. Vertical localization

In ocean data assimilation, the vertical localization is rarely con-
sidered at present. However, the vertical correlations between
salinity at different model layers are clearly shown in Fig. 3(a)
derived from 120 snap shots of a 20-year HYCOM simulation in
the Pacific (see Section 5 for more details of the setups of the sim-
ulation). There is a correlation over 0.2 between the salinities near
surface and that at bottom, which suggests that the considerable
off-diagonal correlations exist. We applied a vertical localization
similar to the above horizontal localization, but with a function
of rvði;jÞ ¼ exp½�ðDqij=LqÞ2� , where Dqij is the seawater density dif-
ference between the two layers i and j; Lq is a scaling factor and
takes the value of 0.5 kg m�3. In this formulation, the vertical ‘‘dis-
tance” between two layers is measured here by stratification rather
than the Euclidean distance. In this study, the localization is only
applied to the two model state variables, i.e., layer temperature
and salinity at the step (ii) of the modified schemes. Fig. 3(b) shows
the vertical correlations between the layer salinities after the local-
ization. The off-diagonal elements in the covariance matrix are
almost canceled while the correlations between the adjacent layers
still remain.

5. Experiments in the pacific

5.1. Argo data and quality control

In this study, all the Argo profiles are collected from the web-
sites of the two global data centers (ftp: usgodae1.usgodae.org/
pub/outgoing/argo and ftp.ifremer.fr/ifremer/argo). Quality control
of the profiles is a vital part of any ocean data assimilation system
and has been studying extensively (e.g., Parker and Jackson, 1995;
Bell et al., 2004).

Here the initial processing step selects the observations accord-
ing to: (1) only in the model domain, (2) being surrounded by sea-
water, (3) the density in a profile is increased with depth. The
further step is to compare them with the model climatology of
GDEM-V3.0. Individual observation in a profile that differ from
the climatological values by more than three times the standard
deviation from GDEM-V3.0, is flagged as having a possible gross er-
ror. If more than half of the observations in a profile are flagged as
the above mentioned, this profile subsequently is excluded in the
quality control. The flagged values in valid profiles are corrected
using the following procedure. First the difference between the
unflagged observations in a profile and the model climatology is
calculated at the levels along a profile. Then the flagged observa-
tions are corrected by the addition of the GDEM-V3.0 climatology
and the vertically interpolated difference. During the period from
January 2004 to December 2007, the 98,251 valid profiles are
assimilated into the HYCOM model in the Pacific, and cover the
whole of model domain as shown in Fig. 4. To evaluate the perfor-
mance of assimilating these profiles with the modified EnOI
schemes, some profiles are set aside in advance as the withheld
observations for validation. Their distributions can be split into
12 sub-regions from a to l and are shown by the red dots in Fig. 4.

5.2. Observations and observational errors

The above six schemes use different types of observations (i.e.,
in terms of temperature, salinity or layer thickness) defined at dif-
ferent spaces. Therefore the estimation of the observational errors
is required for each scheme.

For scheme associated with EXP1A, the temperature and salin-
ity observations are defined at the original measurement levels.
We assumed that the observational errors are Gaussian with zero
mean and uncorrelated between temperature and salinity and be-
tween different levels. Based on the uncertainty estimations such
as the figures of Levitus et al. (1994a,b) and the recommended val-
ues of Stammer et al. (2002), the standard deviations of observa-
tion errors are set to be varied in vertical, from 0.5 �C near the
surface to 0.05 �C in deep ocean for potential temperature and from
0.12 PSU to 0.02 PSU for salinity in this study. Formally, the obser-
vation errors of temperature and salinity are estimated by formula
(8), and their correlations are neglected in all assimilation
experiments.

-0
.2

-0
.2

-0.2

Layer

D
ep

th
(m

)

4 8 12 16 20

12 84 275 1214 5366

12

84

275

1214

5366

-0.2

-0.2

-0.2 -0.2

-0.2

-0.2

-0.2

-0.
2

-0.2

-0.2

-0.2

Layer

La
ye

r

4 8 12 16 20

4

8

12

16

20

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8

12 84 275 1214 5366

(b) (a) 

Fig. 3. Vertical correlations of salinity between different layers at the location of (165.5�E, 12.3�S) in the Pacific: (a) calculated directly from model ensembles (N = 120) and
(b) after applying the vertical localization presented in Section 4.2. The solid (or dashed) contour denotes the correlation of 0.2 (or �0.2). The mean depths of those layers are
estimated by the ensemble.
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In other experiments, the observations are defined at model lay-
ers. We need to convert the observations of temperature and salin-
ity at original levels into the variables in model layers. This
procedure provides the ‘‘observed” values of h, rh, and Dp (thick-
ness) in relevant layers, as following. Based on a pair of profiles
of temperature and salinity, the profile of potential density can
be calculated by an equation of state for seawater (Brydon et al.,
1999). The pressure interfaces for the model layers are computed
from the density profiles in accordance with the specified mini-
mum layer thickness and target densities. First of all, the calculated
density at top level is compared to the target density at the first
layer, and then to decide whether any sufficiently low-density
water is observed. If not, the layer is assigned its minimum thick-
ness. Once water with the target density is encountered, the aver-
aged density in this layer will correspond to target densities. Below
the assigned layer, the comparison can be repeated until to the
maximum depth of observed profile. Then the layer averages for
all variables are computed. In short, this projection is consistent
with the hybrid nature of the model layers, and its algorithm is
simple to the hybrid generator of the HYCOM model.

For these observations defined on model layers, we again
assume that the observational errors are Gaussian with zero mean
and uncorrelated. The standard deviations of observational errors
of the temperature and salinity in model layers is assumed to be
represented as a function of the depth D (unit: m) as the following:

SDTðDÞ ¼ 0:05þ 0:45 expð�0:002DÞ
SDSðDÞ ¼ 0:02þ 0:10 expð�0:008DÞ

�
ð8Þ

According to TE, the observational error variance of layer thick-
ness can be calculated in two kinds of situation. In mixing layer,
the layer thickness is assigned by the minimum thickness so that
its error standard deviation is assumed equal to 0.05Dpk. Here
Dpk is the layer thickness at the kth layer calculated from the ob-
served profiles. In isopycnic layers, the error standard deviations
are determined by

SDðDpkÞ ¼max 0:5dpk;max 0:05Dpk;Dpk 0:05þð0:5�0:05Þ
sdrðkÞ

SDrðkÞ

 !" #( )
;

ð9Þ

where the dpk is the specified minimum layer thickness being a
function of layer number k. The sdr(k) is the minimum error stan-
dard deviation of potential density. Here, we take a constant value

for the standard deviation to be 0.001 kg m�3. As for the error stan-
dard deviation SDr(k) of potential density is similar to the estima-
tion of TE, which reflects the nature of that the error standard
deviation should be small when the estimated layer’s potential den-
sity is closely to its target density.

5.3. Generation of a seasonally varying ensemble

In EnOI, the propagation of observed information depends lar-
gely on the stationary ensemble because the final analysis can be
regarded a combination of the ensemble anomalies, whose relative
weight is determined by the covariance (e.g., Evensen, 2003; Fu
et al., 2009). The calculation of the ensemble anomalies in EnOI
is of critical importance for the performance of assimilation. Even-
sen (2004) proposed a skillful strategy using singular eigenvalue
decomposition (SVD) on ensembles and only selecting the domi-
nant eigenvectors.

Usually the members of the stationary ensemble in EnOI are
chosen from the results of model integration in a long-term. In this
way, the seasonal variability in those ensemble members needs to
be eliminated or restrained such as in Oke et al. (2008) and Wan
et al. (2008). In this paper, we attempt to apply a simple method
to obtain a quasi-stationary ensemble that can vary with the sea-
sons. First, the snapshots of a long-term model simulation (from
1981 to 2002) are selected every 6 days. The model state includes
the variables: temperature, salinity, current components and layer
thickness in the water column plus the barotropic pressure and
velocities. So in each month, there are five snapshots having been
selected. In this way, all the extracted snapshots can be assigned
into 12 monthly files according to the month from January to
December. To eliminate the seasonal variability in the stationary
ensemble and to represent the flow-dependence in the term of sea-
sonality, the ensemble members span a window of a season around
the assimilating time. Consequently N = 120 members are selected
randomly from the three monthly files whose months are the
closest months near the assimilation time. Here 40 snapshots are
selected from each monthly file.

5.4. Configurations of assimilation experiments

To investigate the performance of the above described EnOI
schemes, the configurations of assimilation experiments are pre-
sented as following. All the experiments are run over the period

Fig. 4. Locations of Argo profiles. Blues dots are those assimilated (total number is 98251) from 2004 to 2007. Red dots are withheld Argo profiles (total number is 5301)
during the same period for verification of assimilation schemes. The numbers of withheld profiles in the 12 regions from a to l are 466, 472, 483, 483, 470, 464, 439, 392, 404,
409, 450 and 369 respectively.
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from January 2004 to December 2007. The control run, referred as
EXP0, is a model simulation run without assimilation. Six data
assimilation runs with the experiments of EXP1A, EXP1B, EXP2T,
EXP2S, EXP2Tv, and EXP2Sv are performed. In all data assimilation
experiments, the valid profiles collected in 3 days before the assim-
ilating time are assimilated every 3 days. In all the assimilation
experiments, the scalar a is 0.3 in Eq. (4) and the horizontal local-
ization with the influence scale of 400 km is applied. The main dif-
ferences in all the experiments are specified in Table 1.

The valid Argo profiles over the assimilation period are divided
into two groups, i.e., the assimilated and the withheld for valida-
tion. Fig. 4 shows the horizontal distribution of all the assimilated
and the withheld profiles. Based on the withheld profiles and the
climatology of WOA01, the whole verification and evaluation of
the efficiencies of the different EnOI schemes to assimilate Argo
profiles into HYCOM is investigated in the following text.

6. Results

6.1. Comparison of mean states

The first comparison is conducted for the annual mean states of
temperature and salinity relative to the climatology of WOA01. In
Fig. 5, the averaged temperature and salinity fields in EXP0 are
quite biased to climatology at subsurface along the equator. In
the climatology of WOA01, the depth of 22 �C in the western equa-
torial Pacific is about 160 m, but in the east its depth is shallower
than 50 m. However, in the simulation of EXP0, the depths of 22 �C
are deeper than 200 m and 100 m respectively. After assimilating
the Argo profiles in EXP1A, the pattern of the high-salinity in the
west equatorial Pacific is changed close to the climatology of
WOA01, but the thermocline in the east equatorial changes too
shallow. In the experiment of EXP1B, the mean temperature has
a large difference to the climatology, and the extent of the high-
salinity also is too wide, covering the whole basin. In the experi-
ment of either EXP2T or EXP2S, there are some pronounced
improvements over the results of EXP0. First the temperature
biases around the equatorial thermocline are remarkable reduced.
In the eastern equatorial Pacific, the position of 22 �C contour line
is lifted to a much shallower position (less than 50 m deep), and in
the western equatorial Pacific its depth is also lifted to 180 m.
Moreover, the simulated values of salinity in EXP0 are obviously
lower than WOA01, especially the around the thermocline where
WOA01 has high values of salinity. After assimilation, the simu-
lated salinities are also remarkably improved. The patterns of 35
PSU contour line in both EXP2T and EXP2S all are close to these
in WOA01. The highest values of salinity along the section are fur-
ther pushed towards the values of WOA01. In the experiments of
EXP2T and EXP2S, the up-welling in the eastern equatorial Pacific
becomes stronger, the slope of the equatorial thermocline around
22 �C contour line is steeper in the middle Pacific, and the warm
pool in the western Pacific is thinner, which is more in agreement
with those in WOA01.

To further examine the effect of these two kinds of EnOI
schemes, we look into subsurface distributions of temperature

and salinity along a meridional section. Fig. 6 represents the differ-
ence fields between the annual means of temperature and salinity
from EXP0, EXP1A, EXP1B, EXP2T, and EXP2S and those of
WOA01 on a latitude-depth section along 165�E. The difference
field of temperature between EXP0 and WOA01 was firstly charac-
terized by opposite sign across the thermocline around the equa-
tor. Meanwhile in the northern Pacific, there is a considerable
warm bias over 6 �C, and near the surface the cold bias is also obvi-
ous about 2 �C, which may be resulted from the weak mixing in the
model dynamics. After assimilation in EXP1A, the differences of T
and S can be decreased only in the tropical. Clearly, EXP1A is
resulting in a significant deterioration of the model water masses
with large errors appearing in salinity between 20�N and 40�N. It
suggests the corresponding description of the north Pacific inter-
mediate water is degraded. However, in the results of EXP2T and
EXP2S, it found that the above biases could be reduced remark-
ably. For the whole region in this section, the temperature differ-
ences have been limited less than 2 �C, and the salinity
differences have been decreased no more than 0.2 PSU.

6.2. Comparison with the withheld Argo profiles

Using the withheld profiles (red dots in Fig. 4) we can calculate
the root mean square difference (RMSD) between the analysis and
these withheld profiles of T and S. Comparing their profiles of
RMSD enables us to evaluate the performances of the different
assimilating schemes quantitatively. The results are summarized
in Table 2.

In the 12 sub-regions in Pacific, the vertical profiles of the RMSD
of T and S in EXP0, EXP1A, EXP1B, EXP2T and EXP2S and the
monthly climatology of WOA01 are presented one by one in
Fig. 7. The RMSDs of T in EXP0 are typically larger than these of
the climatology excluding in the sub-regions j and l. After assimi-
lating Argo profiles during this period, the RMSDs of T both in
EXP2T and in EXP2S are fairly lower than that in the simulation
of EXP0 for each sub-region. Especially at the depth around ther-
mocline, the RMSD reductions in EXP2T and EXP2S are so signifi-
cant that in the most of sub-regions their RMSDs of T are less than
those in climatology. Furthermore, the RMSDs of S in EXP0 are also
typically larger than that in WOA01 in the most of sub-regions,
excluding near the surface because the surface sea salinity usually
is more sensitive to the atmospheric conditions and has large var-
iability. In EXP2T and EXP2S, the RMSDs of S are clearly lower than
these of EXP0 for all sub-regions. It is also noticeable that the
RMSD reduction of salinity in EXP2T is more significant than the
reduction in EXP2S, and the RMSD of S in EXP2T is generally no
more than to that of WOA01 from surface to the deep ocean in
most sub-regions.

In order to obtain a general illustration of the overall perfor-
mances of these assimilating schemes, the overall vertical profiles
of the RMSDs of T and S are presented in Fig. 8. After assimilation in
EXP2T and EXP2S, the RMSDs of T or S can be reduced remarkably
from near surface to the depth of 1800 m. The dramatic reduction
of the RMSD appears at subsurface around 200 m. The RMSDs of S
are uniformly less than 0.2 PSU, and the significant reduction of the

Table 1
Specifications of assimilation experiments.

Experiment ID Assimilation frequency Observation space Localization Diagnosing

EXP0 1/(3 days) – – –
EXP1A 1/(3 days) In levels Horizontal –
EXP1B 1/(3 days) In model layers Horizontal –
EXP2T 1/(3 days) In model layers Horizontal Temperature
EXP2S 1/(3 days) In model layers Horizontal Salinity
EXP2Tv 1/(3 days) In model layers Horizontal & vertical Temperature
EXP2 Sv 1/(3 days) In model layers Horizontal & vertical Salinity
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Fig. 5. Temperature (left) and salinity (right) sections along the equator from the climatology of WOA01 and the time-averaged analysis in the experiments of EXP0, EXP1A,
EXP1B, EXP2T and EXP2S over the period of 2004–2007.
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RMSD appears near surface above 200 m. It is noticeable that the
RMSDs of T and S in EXP2T are uniformly less than RMSDs of
WOA01 above 1000 m, which indicates the assimilation scheme
applied in EXP2T is the best in the term of overall performance.

As shown in Fig. 8 the RMSD profiles of T and S in the experi-
ments of EXP1A and EXP1B, we found that the RMSD reduction
of the analyzed temperature and salinity is not secured. Especially

the analyzed states in the experiment of EXP1A and EXP1B be-
come far away from the withheld profiles under the depth of
400 m. In order to illustrate their impacts applying these different
EnOI schemes, the RMSDs of temperature and salinity at 400 m are
further listed in Table 2. The number of the validation measure-
ments in the 12 regions from a to l are 535, 650, 475, 512, 638,
461, 507, 581, 189, 311, 539 and 497 respectively. The total mea-

Fig. 6. The differences of temperature (left) and salinity (right) along 165oE between WOA01 and the time-averaged analysis in the experiments of EXP0, EXP1A, EXP1B,
EXP2T and EXP2S over the period of 2004–2007.
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surements around the depth are 5895. As listed in Table 2, the
RMSDs of temperature (salinity) in the regions of c, d and e are
more than 2 �C (0.15 PSU) in EXP0. Geographically, these regions
involve the Kuroshio Current System (i.e., Kuroshio south of Japan
and Kuroshio Extension east of Japan). The Kuroshio, mainly
located above 400 m as the strong western boundary current in
Pacific, has been shown significantly seasonal and interannual var-
iability. It has three typical paths along the southern coast of Japan:
the large meander path, the nearshore non-large meander path,
and the offshore non-large meander path, according to the defini-
tion given by Kawabe (1985). Various studies suggest that the tran-
sition between the above three paths is influenced by mesoscale
eddy activity or growth of baroclinic instability (e.g., Akitomo
et al., 1997; Qiu and Miao, 2000; Miyazawa et al., 2004; Mitsudera
et al., 2006; Tsujino et al., 2006). Especially in the region of 140�–
180�E and 30�–40�N, the Kuroshio Extension (KE) dominates the
vigorously meandering boundary between the warm subtropical
and cold northern waters in Pacific. Being vulnerable to encounter
the cold dry air masses coming from the Asian continent, it is also
one of the most intense ocean–atmosphere interaction regions on
earth (see White and He, 1986; Qiu, 2002, 2003). So Wunsch and
Stammer (1995) explored that in Pacific the most significant vari-
ability for timescales either less than 150 days or exceeding
150 days all are located in the KE region.

Owing to the considerable variability in the region of d, the tem-
perature RMSD of WOA01 is over 3.3 �C at the depth of 400 m as
listed in Table 2. The counterpart of EXP0 is over 4 �C, which is dis-
tinctly more than any difference in other regions. After assimilating
the profiles with the straightforward schemes in EXP1A and
EXP1B, the RMSDs of T and S cannot be simultaneously reduced.
Applying the modified EnOI schemes, the RMSDs in the experi-
ments of EXP2T, EXP2S, EXP2Tv and EXP2Sv can be remarkably
decreased to less than 2 �C and 0.2 PSU respectively. However,
even with the modified schemes, the RMSDs in the region of d
are still far more than RMSDs in other regions. The large RMS is
partly due to the resolution of the model and the BECs. However,
Argo profile does not capture mesoscale activities, and thus a large
RMS near the Kuroshio Extension should be expected. Because the
BECs in EnOI are calculated by the snapshots of model state, the
performance of assimilation is quite dependent on the accuracy
of the error correlations. The high mesoscale spatial variability in
the region d makes the BECs difficult to resolve the error covari-
ance at the mesoscale length scales.

To further evaluate the assimilation performances of the four
modified EnOI schemes, to differentiate the effects of diagnosing
temperature and diagnosing salinity, and to examine the impact
of vertical localization, the profiles of the RMSDs of T and S in
the four assimilation experiments (EXP2T, EXP2S, EXP2Tv and
EXP2Sv) are presented in Fig. 9. The temperature RMSD differences
in these experiments are rather small. However the RMSD reduc-

tion of salinity in EXP2T is significantly larger than that in EXP2S.
Why diagnosing temperature or diagnosing salinity makes a little
difference in temperature analysis, but a significant difference in
salinity analysis? First let us remind of the work flow of the mod-
ified schemes. The first step of the modified schemes is assimilat-
ing the layer thickness ‘‘observations”. The second step is to
assimilating either temperature (EXP2S) or salinity (EXP2T) obser-
vations at model layers. The third step is diagnosing either salinity
(EXP2T) or temperature (EXP2S). The density of seawater is deter-
mined by both salinity and temperature in upper-ocean. In most
parts of oceans, the vertical variation of temperature from surface
to bottom usually is more dominant than that of salinity (e.g., Slutz
et al., 1985; Conkright et al., 2002). Thus the seawater density in
vertical is dominated by temperature, while the effect of salinity
on density is only secondary at most oceans. The modified scheme
with option of diagnosing temperature essentially assimilates the
density and salinity observations, while the modified scheme with
option of diagnosing salinity essentially assimilates the density
and temperature observations. Diagnosing salinity from density
and temperature is somehow like obtaining a small number by dif-
ferentiating two large numbers and is sensitive to errors in density
and temperature analysis.

When the vertical localization is applied, the difference among
the RMSDs of T in these experiments is very small, as shown in the
left plot of Fig. 9. However, the RMSDs of S in EXP2Tv are lower
than those in EXP2T at most levels of the depth from 100 m to
1000 m, and does so to that in EXP2Sv relative to EXP2S. They sug-
gest that the EnOI scheme considering the vertical localization can
yield some slight improvement for the salinity RMSD. As a function
of depth, the profiles of T and S are modulated by the densities at
model layers. Exactly owing to the different independence of den-
sity on temperature and on salinity, it shows the different sensitiv-
ities of the profiles of T and S to the vertical localization. In general,
the RMSDs of S can be reduced by this vertical location formula-
tion. Certainly, the localization can significantly compromise the
model’s dynamical balance (e.g., Oke et al., 2007) so that the fur-
ther investigation and conformation about the vertical localization
should be valuable to improve the performance of the modified
assimilation schemes.

6.3. Adjustment of velocity fields

Usually the adjustment of velocity fields using OI or 3DVAR is
computed diagnostically based on the analyzed state (e.g., Thacker
et al., 2004; Cummings, 2005), which ensures a geostrophic bal-
ance between the velocity field and the changing pressure field.
It will increase the computation cost of the analysis in an operation
assimilation system. One advantage of EnOI is that the corrections
of all model state preserve their model dynamic balances by the
BEC which is derived from a ensemble of model states and allows

Table 2
RMSDs of temperature (unit: �C)/salinity (unit: PSU) at the depth of 400 m (±10 m) in the six experiments, along with the control run (EXP0) and WOA01. The bold values are
highlight on the region with the maximal RMSDs of T and S.

Area EXP0 EXP1A EXP1B EXP2T EXP2S EXP2Tv EXP2 Sv WOA01

A .59/.04 .56/.07 .85/.06 .45/.05 .47/.05 .44/.04 .46/.05 .85/.06
B .72/.07 .75/.20 1.78/.11 .53/.05 .55/.07 .53/.04 .53/.05 1.31/.05
C 2.85/.24 1.34/.18 3.17/.19 1.19/.09 1.25/.13 1.18/.08 1.14/.13 2.29/.13
D 4.02/.31 2.55/.32 4.33/.29 1.94/.16 1.97/.18 1.91/.15 1.83/.17 3.31/.20
E 3.90/.18 1.05/.21 4.15/.24 .91/.07 .85/.09 .94/.07 .81/.10 1.07/.07
F 1.46/.07 .61/.21 2.71/.19 .39/.04 .43/.08 .40/.04 .50/.10 .81/.04
G .77/.07 .79/.11 .82/.07 .47/.06 .55/.08 .46/.06 .52/.07 .69/.06
H .83/.10 .72/.11 .61/.05 .46/.05 .51/.07 .43/.04 .47/.06 .97/.06
I .78/.08 .49/.06 .59/.06 .56/.06 .57/.07 .52/.06 .54/.07 1.14/.05
J .86/.11 .69/.09 1.40/.13 .74/.09 .75/.09 .73/.08 .73/.09 1.86/.19
K .85/.06 .68/.08 .96/.07 .69/.07 .81/.09 .70/.06 .73/.07 .86/.05
L .94/.08 1.05/.23 3.02/.25 .63/.06 .65/.10 .61/.05 .60/.08 1.60/.09
All 2.07/.15 1.10/.18 2.52/.17 .86/.08 .89/.10 .86/.07 .84/.09 1.51/.10

292 J. Xie, J. Zhu / Ocean Modelling 33 (2010) 283–298



Author's personal copy

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A
EXP1B

Region a

0

200

400

600

800

1000

1200

1400

RMSD of Temperature (oC)

.5 1.0 1.5 2.0 2.5 3.0 3.5

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region b

RMSD of Salinity (psu)

.06 .12 .18 .24 .30 .36 .42 .48

.06 .12 .18 .24 .30 .36 .42 .48
0

200

400

600

800

1000

1200

1400

.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region g

.07 .14 .21 .28 .35 .42 .49

.07 .14 .21 .28 .35 .42 .49

0

200

400

600

800

1000

1200

1400

RMSD of Temperature (oC)

1 2 3 4 5 6 7 8

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region h

RMSD of Salinity (psu)

0

200

400

600

800

1000

1200

1400

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region c

0

200

400

600

800

1000

1200

1400

RMSD of Temperature (oC)

.7 1.4 2.1 2.8 3.5 4.2 4.9

.7 1.4 2.1 2.8 3.5 4.2 4.9

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region d

RMSD of Salinity (psu)

.06 .12 .18 .24 .30 .36 .42

.06 .12 .18 .24 .30 .36 .42
0

200

400

600

800

1000

1200

1400

.5 1.0 1.5 2.0 2.5 3.0

D
ep

th
 (m

)
0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region i

.05 .10 .15 .20 .25 .30 .35 .40 .45

0

200

400

600

800

1000

1200

1400

RMSD of Temperature (oC)

.5 1.0 1.5 2.0 2.5 3.0

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region j

RMSD of Salinity (psu)

.05 .10 .15 .20 .25 .30

0

200

400

600

800

1000

1200

1400

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region e

0

200

400

600

800

1000

1200

1400

RMSD of Temperature (oC)

.6 1.2 1.8 2.4 3.0 3.6 4.2

.6 1.2 1.8 2.4 3.0 3.6 4.2

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region f

RMSD of Salinity (psu)

.06 .12 .18 .24 .30 .36 .42 .48

0

200

400

600

800

1000

1200

1400

.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region k

.07 .14 .21 .28 .35 .42 .49

0

200

400

600

800

1000

1200

1400

RMSD of Temperature (oC)

.5 1.0 1.5 2.0 2.5 3.0 3.5

D
ep

th
 (m

)

0

200

400

600

800

1000

1200

1400

WOA01 
EXP0
EXP2T
EXP2S
EXP1A 
EXP1B 

Region l

RMSD of Salinity (psu)

.05 .10 .15 .20 .25 .30 .35 .40

.05 .10 .15 .20 .25 .30 .35 .40
0

200

400

600

800

1000

1200

1400

Fig. 7. Vertical distributions of the RMSDs of temperature and salinity in the experiments of EXP0 (black dash), EXP2T (red solid), EXP2S (cyan dash-dot), EXP1A (blue solid),
EXP1B (dark yellow dash-dot-dot) and in WOA01 (green dash-dot) as validated using the withheld profiles in 12 regions from a to l as shown in Fig. 4.
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more anisotropic and inhomogeneous patterns (Evensen, 2003;
Oke et al., 2008; Fu et al., 2009). The velocity adjustments are made
differently when using the straightforward schemes and the
modified schemes. In the straightforward schemes the adjustment
is made via the covariance between velocity and H(d, T, S) where H
is the observation operator that transforms the model state
variables to T, S profiles. In the modified schemes the adjustment
is made via the covariance between velocity and layer thickness.
Because the evolving velocity fields are dominated by the pressure
gradient force that is determined by the slope of the layer depth,
the ways of adjusting velocity field in the modified schemes are
simple in concept and more interpretable.

Fig. 10 shows some examples of the analysis incremental
around two profile locations of float 2900364 in the northern Paci-
fic and float 2900428 near the equator on January 1, 2005. In the
northern Pacific, the analysis increments of layer thickness at the
10th layer are highly isotropic and negative around the profile
location as shown in Fig. 10(a), which shows the geostrophic
balance to the cyclonic circulation of the velocity increments at

this layer. Moreover, as shown in Fig. 10(c), the surface current
increments display a coherent pattern with the increments of sea
surface height so that the geostrophic balance could be preserved.
Near the equator, as shown by Fig. 10(b) and (d), the BEC displays
less isotropic patterns. It is noticeable that the increments of stron-
gest velocities always are corresponding to the emergences with
the maximum gradients of increments of layer thickness and sea
surface height.

To evaluate the analyzed velocity fields with these different
EnOI schemes, we conduct a comparison between time-mean ana-
lyzed velocity fields with the velocity observations by TAO moor-
ing. Fig. 11 illustrates the impact of Argo profile on the averaged
zonal velocity along the equator. The climatological mean in
Fig. 11(a) is calculated from the six TAO current meters from
1988 to 2007. They all distribute along the equator with the longi-
tudes as following: 147�E, 156�E, 165�E, 170�W, 140�W and 110�W
(McPhaden et al., 1998). In vertical, the current measurements are
interpolated by quadratic spline. And their data-availabilities in
each year are more than 288 days. There are two obvious features
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in the observed zonal current distribution. One is the closed center
of maximum near 140�W with 90 cm s�1 is located at 110 m. An-
other feature is in the eastern equatorial Pacific the strong vertical
gradient occurs at the subsurface around 50 m.

The annual mean of the model simulations without assimilation
in the period from 2004 to 2007 are shown in Fig. 11 (b). The closed
center of maximum near 140�W has a position at 170 m with a
much higher speed of 120 cm s�1. The vertical gradient below the
mixed layer in the eastern equator is too diffuse.

After assimilation of Argo profiles applying the different EnOI
schemes, the current speed and patterns have been changed with
different behavior. In EXP1A, the subsurface gradient of current
speed in the eastern equatorial Pacific is increased and lifted, but
the strength of the center near 140�W is seriously weaken
(Fig. 11(c)). As to another straightforward scheme in EXP1B
(Fig. 11(d)), the improvement of the subsurface gradient is not so
obvious. The core of the current maximum in Fig. 11(d) is further
strengthened, and changes to an even deeper and a more eastern
position. The mean analyzed zonal current distribution by the
modified schemes in EXP2T (Fig. 11(e)) and EXP2S (Fig. 11(f)) ap-
pear moderate and tractable. The strength of the speed maximum
near 140�W is reduced to no more than 100 cm s�1, and its position
is raised and close to the climatology of TAO array. The subsurface
gradient in the eastern equator also has been reinforced and lifted
comparing to the simulation without assimilation. Moreover, the
inappropriate strengthen of the westward currents of EXP1A near
surface and in warm pool are improved moderately. The other
modified schemes with localization (e.g., EXP2Tv and EXP2Sv)

have similar performance as EXP2T and EXP2S because the verti-
cal localizations are only applied to layer temperature and salinity
and have little impacts on velocity. Therefore we omitted in Fig. 11.
There are still some defects in the assimilation with the modified
schemes. For instance, the depth of the maximum value of the
undercurrent around 140�W is deeper than that of the observed,
and in the western equatorial Pacific the westward currents are
so strong that they downward extend deeper than 100 m. This
could be due to model bias (Bell et al., 2004). Balmaseda et al.
(2007) compared the vertical profiles of the mean zonal velocity
at 110�W under the different situations: after assimilation, no
assimilation, and observation by TAO mooring. They found that
in the assimilation the undercurrent is too broad, and the level of
the maximum value is too deep. Although the ocean models and
the assimilation methods are different, the degradation of the ver-
tical structure of the equatorial currents appears some similar
characteristics in this study.

7. Conclusions and discussion

In this study, we compared the performances of some different
EnOI schemes for assimilating Argo profile observations into
HYCOM by conducting several data assimilation experiments over
the Pacific during the period of 2004–2007.

The straightforward ways to assimilate Argo temperature and
salinity profiles use observation operators that transform the
model variables (e.g., layer thicknesses, layer temperatures and
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layer salinities) to observed temperature and salinity profiles.
The modified schemes, which are based on the idea of TE but
using EnOI method other than 3DVAR method, take several
steps. First, the Argo profiles are used to obtain the ‘‘observa-
tions” of layer thicknesses, temperatures and salinities in model
layers and the analysis update is carried out for the layer thick-
ness and velocity fields by assimilating the observed layer thick-
ness, but do not adjust the layer temperature and salinity. Then,
the T (or S) profiles are assimilated to adjust the model layer
temperatures (or salinities). In this step, the observation operator
is defined with previously adjusted layer thickness. At the last
step, the model layer salinities (or temperature) are derived from
the equation of state of seawater.

Since the model simulation has large biases comparing to
WOA01 climatology, we first examined the time–mean tempera-
ture and salinity fields in each assimilation experiment in order
to check their ability to reduce the biases by assimilating Argo pro-
files. The stratifications of temperature and salinity have been sig-
nificantly improved after assimilation Argo profiles with the
modified schemes. But the improvements from the straightforward
schemes are not stable and so significant.

Then we compared the assimilation results with the withheld
Argo profiles to examine their ability to capture the temperature
and salinity variability. The RMSD reductions of T and S after
assimilation using the modified schemes are prominent and less
than RMSDs of WOA01 (about 60% and 70% of RMSDs of WOA01
for temperature and salinity, respectively) in most of targeted
sub-regions. For example, around 400 m the overall accuracy of

temperature and salinity is about 0.9 �C and 0.08 PSU respectively
(as Table 2). Meanwhile the straightforward schemes cannot en-
sure the reduction of the RMSDs of temperature and salinity and
show very limited ability to capture the variability.

The above quantitative comparisons of different EnOI
schemes suggest that the modified schemes perform better than
the straightforward schemes. The two kinds of schemes use dif-
ferent innovation vectors. But these innovation vectors contain
essentially the same amount of information provided by the
same Argo data. Since all the EnOI schemes used in this study
are only suboptimal, the superiority of one scheme over another
only reflect the difference of the closeness of corresponding re-
sult to the optimal solution. The suboptimality comes from sev-
eral factors such as imperfect BECs and the linear analysis
update Eq. (1) which is equivalent to minimize the Kalman filter
cost function J(X) in the Eq. (10) based on linear algebra (e.g.,
Bouttier and Courtier, 1999):

Xa ¼ Arg min JðXÞ
JðXÞ ¼ ðX � XbÞTPb�1ðX � XbÞ þ ðYo � HXbÞTR�1ðYo � HXbÞ

ð10Þ

Here at the right side of Eq. (10), the first is the background
term derived from the ensemble, the second is the observation
term. One can rely on the linearization of a weakly non-linear
observation operator, at the expense of optimality. The observation
operator used by the straightforward schemes are strong non-lin-
ear as discussed earlier and may cause serious suboptimal prob-
lem. Meanwhile the observation operators used in the modified
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Fig. 11. Time averaged zonal velocity across the Pacific at the equator: (a) from TAO current meters, (b) from EXP0, (c) from EXP1A, (d) from EXP1B, (e) from EXP2T, (f) from
EXP2S. Contour interval is 10 cm s�1. The westward flows are negative and displayed by the dash lines. The time average is made over the assimilation period.
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schemes are all linear. We believe that the difference of non-line-
arity and linearity is the main factor of diversity of performances
of these schemes.

Another finding is that in the modified schemes the tempera-
ture should be diagnosed instead of salinity, because the assimila-
tion scheme of diagnosing temperature yields similar results for
temperature but significantly better result for salinity than the
scheme of diagnosing salinity. Because in most open oceans, the ef-
fect of the salinity change on density is not as significant as that of
temperature. Diagnosing salinity from density and temperature is
somehow like obtaining a small number by differentiating two
large numbers and is sensitive to errors in density and temperature
analysis. In this study we made an attempt to apply a vertical local-
ization and found improvements on reducing the RMSD of salini-
ties. However its impact on temperature field is ignorable. The
underlying reasons should be further investigated.

As a multivariate method, EnOI schemes also make an adjust-
ment of velocity fields. However the adjustments are made differ-
ently when using the straightforward schemes and the modified
schemes. In the straightforward schemes the adjustment is made
via the covariance between velocity and H(d, T, S) where H is the
observation operator that transforms the model state to T, S profiles.
In the modified schemes the adjustment is made via the covariance
between velocity and layer thickness and the geostropic balance can
be kept. Comparing with the simulation and TAO zonal current
observations, both improvement and degradation exist in assimila-
tion results. All the schemes degrade the zonal current in the wes-
tern equatorial Pacific between 160�E and the dateline above
150 m. The modified schemes have some moderate improvements
in simulated maximum zonal current speeds near 140�W by reduc-
ing the speed maximum to no more than 100 cm s�1 and raising its
position to the observed position. The defects in current analysis
could be due to model bias as shown by previous studies (e.g., Bell
et al., 2004; Balmaseda et al., 2007). The data assimilation schemes
are simply bias-blind here. The model bias does not only cause the
degradation in current analysis but also can introduce artificial trend
and variability in assimilation results because of the irregular distri-
butions of observation networks in ocean. Consideration of model
bias in necessary in future studies.
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