Introduction	

Putting wave drag into an ocean model

Energy budget

Model evaluation

Summary

A Mechanical Energy Budget and Evaluation of an Eddying Global Ocean Model with a Wave Drag Parameterization

David Trossman¹ Brian Arbic¹ Steve Garner² John Goff³ Steven Jayne⁴ E. Joseph Metzger⁵ Alan Wallcraft⁵

¹University of Michigan-Ann Arbor, Dept Earth & Environmental Sciences
 ²NOAA/Geophysical Fluid Dynamics Laboratory
 ³University of Texas-Austin, Institute for Geophysics
 ⁴Woods Hole Oceanographic Institution, Physical Oceanography Department
 ⁵Naval Research Laboratory-Stennis Space Center, Oceanography Division

LOM Meeting, 2013

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Outline				

Introduction

- Motivation and what wave drag is
- The model and observations for comparison
- Putting wave drag into an ocean model
 - Wave drag scheme choices

3 Energy budget

 Mechanical energy budget from the continuity and momentum equations

Model evaluation

Taylor diagrams of all five diagnostics

Introduction ●○○○○○○○	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Motivation and what	t wave drag is			
Outline				

- The model and observations for comparison
- Putting wave drag into an ocean model
 Wave drag scheme choices
- 3 Energy budget
 - Mechanical energy budget from the continuity and momentum equations
- Model evaluation
 - Taylor diagrams of all five diagnostics

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Sum
0000000				

A truncated history of topographic wave drag studies

Previous studies

• Atmospheric general circulation models improved with wave drag (e.g., *Palmer et al.*, 1986)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	
0000000				

Summarv

Motivation and what wave drag is

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., *Palmer et al.*, 1986)
- ∃ ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., *Polzin et al.*, 1997; ...; *St. Laurent et al.*, 2012)

Introduction	Putting wave drag into an ocean model	Energy budget	Mode
0000000			

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., *Palmer et al.*, 1986)
- ∃ ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., *Polzin et al.*, 1997; ...; *St. Laurent et al.*, 2012)
- Wave drag boosts vertical diffusivity (e.g., St. Laurent et al., 2002) and improves all considered tidal constituent amplitudes (e.g., Jayne and St. Laurent, 2001) in barotropic tidal models

Introduction	Putting wave drag into an ocean model	Energy budget
0000000		

A truncated history of topographic wave drag studies

Previous studies

- Atmospheric general circulation models improved with wave drag (e.g., *Palmer et al.*, 1986)
- ∃ ample observational evidence that vertical diffusivity is enhanced in regions with rough topography (e.g., *Polzin et al.*, 1997; ...; *St. Laurent et al.*, 2012)
- Wave drag boosts vertical diffusivity (e.g., *St. Laurent et al.*, 2002) and improves all considered tidal constituent amplitudes (e.g., *Jayne and St. Laurent*, 2001) in barotropic tidal models
- Offline estimates suggest wave drag dissipates energy at 0.2 – 0.49 TW in abyssal hill regions (e.g., *Nikurashin and Ferrari*, 2011; *Scott et al.*, 2011)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summa
0000000				

A history of topographic wave drag improving models (contd...)

Our goals

• How do we insert wave drag into an eddying global ocean model (without tides)?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summa
0000000				

A history of topographic wave drag improving models (contd...)

Our goals

- How do we insert wave drag into an eddying global ocean model (without tides)?
- How does wave drag impact the stratification, kinetic energy, and the input and output terms in the kinetic energy equation?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summ
0000000				

A history of topographic wave drag improving models (contd...)

Our goals

- How do we insert wave drag into an eddying global ocean model (without tides)?
- How does wave drag impact the stratification, kinetic energy, and the input and output terms in the kinetic energy equation?
- Are general circulation ocean models forced only by winds and air-sea fluxes improved when wave drag is included?

Introduction	Putting wave of	drag into	an ocean	model
0000000				

Energy budget

Model evaluation

Summary

Motivation and what wave drag is

What is topographic wave drag? (Froude number = U/NH)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
The model and ol	bservations for comparison			
Outline				

Introduction

- Motivation and what wave drag is
- The model and observations for comparison
- Putting wave drag into an ocean model
 Wave drag scheme choices

3 Energy budget

 Mechanical energy budget from the continuity and momentum equations

Model evaluation

Taylor diagrams of all five diagnostics

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		
The model and obs	The model and observations for comparison					
Our mode	ls					

HYbrid Coordinate Ocean Model (HYCOM)

- 32 hybrid layers
- 1/12.5°, 1/25° resolutions

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		
The model and obse	The model and observations for comparison					
Our mode	Our models					

HYbrid Coordinate Ocean Model (HYCOM)

- 32 hybrid layers
- 1/12.5°, 1/25° resolutions

Parallel Ocean Program (POP) component of the Community Earth System Model (CESM) 1.1

- 62 z-layers
- 1/10^o resolution

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary	
The model and observations for comparison					
Energy Inputs and Outputs					

 Air-sea fluxes - monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		
The model and obse	The model and observations for comparison					
Energy Inp	Energy Inputs and Outputs					

- Air-sea fluxes monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP
- Winds monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; *Rosmond et al.*, 2002) for HYCOM, CORE 2.0 for POP

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary			
The model and observations for comparison							
Energy In	Energy Inputs and Outputs						

- Air-sea fluxes monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP
- Winds monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; *Rosmond* et al., 2002) for HYCOM, CORE 2.0 for POP

Dissipators

 Horizontal viscosity - (~ 10² – 10³ m² s⁻¹) includes the maximum of a Laplacian and a *Smagorinsky* (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary			
The model and observations for comparison							
Energy In	Energy Inputs and Outputs						

- Air-sea fluxes monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP
- Winds monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; *Rosmond* et al., 2002) for HYCOM, CORE 2.0 for POP

Dissipators

- Horizontal viscosity (~ 10² − 10³ m² s⁻¹) includes the maximum of a Laplacian and a *Smagorinsky* (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP
- Vertical viscosity (~ 10⁻⁴ 10⁻³ m² s⁻¹) multiply the vertical diffusivities from KPP (*Large et al.*, 1994) by a Prandtl number (ten)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary			
The model and observations for comparison							
Energy In	Energy Inputs and Outputs						

- Air-sea fluxes monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP
- Winds monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; *Rosmond et al.*, 2002) for HYCOM, CORE 2.0 for POP

Dissipators

- Horizontal viscosity (~ 10² 10³ m² s⁻¹) includes the maximum of a Laplacian and a *Smagorinsky* (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP
- Vertical viscosity (~ 10⁻⁴ 10⁻³ m² s⁻¹) multiply the vertical diffusivities from KPP (*Large et al.*, 1994) by a Prandtl number (ten)
- Bottom drag quadratic in the momentum equations with coefficient, $C_d = 2.5 \times 10^{-3}$ for HYCOM, 10^{-3} for POP (*Taylor*, 1919; ...; *Arbic et al.*, 2009)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary			
The model and observations for comparison							
Energy In	Energy Inputs and Outputs						

- Air-sea fluxes monthly mean ECMWF Re-Analysis (ERA-40; Kallberg et al., 2004) for HYCOM, Coordinate Ocean Reference Experiment (CORE 2.0; Large and Yeager, 2009) for POP
- Winds monthly mean ERA-40 supplemented with 6-hourly 2003 fields of the Navy Operational Global Atmospheric Prediction System (NOGAPS; *Rosmond* et al., 2002) for HYCOM, CORE 2.0 for POP

Dissipators

- Horizontal viscosity (~ 10² − 10³ m² s⁻¹) includes the maximum of a Laplacian and a *Smagorinsky* (1993) parameterization with an additional biharmonic term for HYCOM, biharmonic term for POP
- Vertical viscosity (~ 10⁻⁴ 10⁻³ m² s⁻¹) multiply the vertical diffusivities from KPP (*Large et al.*, 1994) by a Prandtl number (ten)
- Bottom drag quadratic in the momentum equations with coefficient, $C_d = 2.5 \times 10^{-3}$ for HYCOM, 10^{-3} for POP (*Taylor*, 1919; ...; *Arbic et al.*, 2009)
- Wave drag Garner (2005) scheme is used (see later)

Introduction Putting wave drag into an ocean model

Energy budget

Model evaluation

Summary

The model and observations for comparison

Diagnostics informed by observations and compared with model output

Current meters (Global Multi-Archive Current Meter Database; http://stockage.univ-brest.fr/scott/GMACMD/updates.html)

Mean vertical structure of kinetic energy

Introduction Putting wave drag into an ocean model

Energy budget

Model evaluation

Summary

The model and observations for comparison

Diagnostics informed by observations and compared with model output

Current meters (Global Multi-Archive Current Meter Database; http://stockage.univ-brest.fr/scott/GMACMD/updates.html)

Mean vertical structure of kinetic energy

Satellite altimetry (Archiving, Validation and Interpretation of Satellite Oceanographic; http://www.aviso.oceanobs.com/es/data/index.html)

- Surface kinetic energy
- Eddy length scales (inverse first centroid of kinetic energy power spectrum)
- Sea surface height variance
- Intensified jet positions (via Kelly et al., 2007)

Introduction	Putting wave drag into an ocean model •oooooo	Energy budget	Model evaluation	Summary	
Wave drag scheme choices					
Outline					

Introduction

- Motivation and what wave drag is
- The model and observations for comparison

Putting wave drag into an ocean model Wave drag scheme choices

3 Energy budget

 Mechanical energy budget from the continuity and momentum equations

Model evaluation

• Taylor diagrams of all five diagnostics

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summa
	000000			

1) What is the range of wavenumbers over which the internal waves are not evanescant?

$$f/U \sim 10^{-4} m^{-1} < |\vec{k}| < N/U \sim 10^{-1} m^{-1}.$$
 (1)

Here,

- f is the Coriolis parameter
- N is the buoyancy frequency
- U is the velocity near the seafloor
- $|\vec{k}|$ is the wavenumber of the internal wave

Scott et al. (2011) used a range that went down to $f/U \sim 10^{-6}$ m⁻¹.

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
	000000			

2) Which wave drag parameterizations are there to choose from?

Using a momentum sink:

- Implement in wavenumber space; e.g., Bell (1975)
- Implement in physical space; e.g., Garner (2005)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Sumr
	000000			

2) Which wave drag parameterizations are there to choose from?

Using a momentum sink:

- Implement in wavenumber space; e.g., Bell (1975)
- Implement in physical space; e.g., Garner (2005)

Features of Garner (2005) vs those of Bell (1975)

- Garner (2005) allows for topographic blocking, but does not depend on Coriolis
- Bell (1975) does not allow for topographic blocking, but does depend on Coriolis
- Both schemes depend on stratification, velocity, and underlying topographic features and assume *f* <

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Wave drag scheme	choices			
2) (cont) schemes	Comparison of the Bel	/ (1975) and	<i>Garner</i> (2005)	

We choose to use the *Garner* (2005) scheme, but the *Bell* (1975) scheme yields similar results (offline)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		
Wave drag scheme choices						
3) Where do we apply wave drag?						

- Is the model numerically stable when wave drag is applied everywhere?
- Is it possible and does it make sense to apply wave drag everywhere?

Interpolate over topographic slopes that are supercritical? Apply wave drag only in abyssal hill regions? Apply wave drag only in regions deeper than 500 meters? ...

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summar
	0000000			

4) Estimate the input parameters for the wave drag scheme of your choice

- Integrate Goff and Jordan (1988) abyssal hill power spectrum, weighted by wavenumbers from (1)
- parameters for power spectrum from Goff and Arbic (2010) and Goff (2010) in abyssal hill regions
- use a machine learning algorithm (Wood, 2006) to fill in the non-abyssal hill regions

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summ
	000000			

5) How should the momentum be deposited vertically?

- Is there observational evidence for enhanced turbulence, if not lee wave drag, in the bottom, say, 500 meters? (see Naveira-Garabato et al., 2012)
- Is there evidence that there needs to be a depth-dependent vertical deposition of momentum? (*Polzin* (2009) suggests that there is and the *Garner* (2005) scheme is capable of doing this)
- Are there locations where a non-trivial vertical deposition of momentum is important? (will not be addressed here)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary			
Mechanical energy budget from the continuity and momentum equations							
Outline							

Introduction

- Motivation and what wave drag is
- The model and observations for comparison
- Putting wave drag into an ocean model
 Wave drag scheme choices

3 Energy budget

 Mechanical energy budget from the continuity and momentum equations

4 Model evaluation

• Taylor diagrams of all five diagnostics

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		
Mechanical energy budget from the continuity and momentum equations						

Momentum equations \rightarrow kinetic energy equation

$$\begin{aligned} \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} + \frac{1}{\rho}\vec{\nabla}\rho + f\hat{k} \times \vec{u} + g\hat{k} = \\ \frac{\delta_s}{\rho}\frac{\vec{\tau}_{wind}}{H_s} - \delta_{b,H_{BD}}\frac{C_d}{H_{BD}}|\vec{u}|\vec{u} - \delta_{b,H_{WD}}\frac{|r_{drag}|}{H_{WD}}\vec{u} \\ - \frac{\partial}{\partial z}(\nu_z\frac{\partial}{\partial z}\vec{u}_H) - \vec{\nabla} \cdot (\nu_{h,2}\vec{\nabla}\vec{u}_H + \nu_{h,4}\vec{\nabla}\nabla^2\vec{u}_H) \end{aligned}$$

(2)

Introduction	Putting wave drag into an ocean model	Energy budget o●oooo	Model evaluation	Summary	
Mechanical energy budget from the continuity and momentum equations					

Momentum equations \rightarrow kinetic energy equation

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} + \frac{1}{\rho}\vec{\nabla}\rho + f\hat{k} \times \vec{u} + g\hat{k} =$$
(2)
$$\frac{\delta_s}{\rho}\frac{\vec{\tau}_{wind}}{H_s} - \delta_{b,H_{BD}}\frac{C_d}{H_{BD}}|\vec{u}|\vec{u} - \delta_{b,H_{WD}}\frac{|r_{drag}|}{H_{WD}}\vec{u} - \frac{\partial}{\partial z}(\nu_z\frac{\partial}{\partial z}\vec{u}_H) - \vec{\nabla} \cdot (\nu_{h,2}\vec{\nabla}\vec{u}_H + \nu_{h,4}\vec{\nabla}\nabla^2\vec{u}_H)$$

Multiply the momentum equations by ρ and take a dot product with velocity, \vec{u} ; then integrate over the globe

Introduction	Putting wave drag into an ocean model	Energy budget o●oooo	Model evaluation	Summary	
Mechanical energy budget from the continuity and momentum equations					

Momentum equations \rightarrow kinetic energy equation

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla})\vec{u} + \frac{1}{\rho}\vec{\nabla}\rho + f\hat{k} \times \vec{u} + g\hat{k} =$$
(2)
$$\frac{\delta_s}{\rho}\frac{\vec{\tau}_{wind}}{H_s} - \delta_{b,H_{BD}}\frac{C_d}{H_{BD}}|\vec{u}|\vec{u} - \delta_{b,H_{WD}}\frac{|r_{drag}|}{H_{WD}}\vec{u} - \frac{\partial}{\partial z}(\nu_z\frac{\partial}{\partial z}\vec{u}_H) - \vec{\nabla} \cdot (\nu_{h,2}\vec{\nabla}\vec{u}_H + \nu_{h,4}\vec{\nabla}\nabla^2\vec{u}_H)$$

Multiply the momentum equations by ρ and take a dot product with velocity, \vec{u} ; then integrate over the globe

$$P_{E_{k} time} + P_{E_{k} advection} = P_{pressure} + P_{input} - P_{output} + C_{E_{k} \rightarrow E_{P}}$$
 (3)

Global Integrals of Input/Output Terms in TW= 10 ¹² W						
Mechanical energy budget from the continuity and momentum equations						
Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		

$$egin{aligned} P_{E_{\mathcal{K}}\textit{time}} + P_{E_{\mathcal{K}}\textit{advection}} &= C_{E_{\mathcal{K}}
ightarrow E_{\mathcal{P}}} + P_{\textit{pressure}} \ + P_{\textit{Wind}} - P_{\textit{BD}} - P_{\textit{WD}} - P_{\textit{VV}} - P_{\textit{HV}} \end{aligned}$$

(4)

WD?	Wind	Buoy	BD	WD	VV	HV
no	0.87	0.066	0.31	N/A	0.29	0.29
yes	0.87	0.066	0.14	0.40	0.28	0.26

Inputs vs Outputs:

- 5% imbalance (outputs less than inputs) without wave drag
- 15% imbalance (inputs less than outputs) with wave drag

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		
Mechanical energy budget from the continuity and momentum equations						

Mass conservation equation \rightarrow potential energy equation

$$\int dV \frac{d(\rho gz)}{dt} = \int dV \left[\frac{\partial(\rho gz)}{\partial t} + \vec{u} \cdot \vec{\nabla}(\rho gz) \right]$$
(5)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary		
Mechanical energy budget from the continuity and momentum equations						

Mass conservation equation \rightarrow potential energy equation

$$\int dV \frac{d(\rho gz)}{dt} = \int dV \left[\frac{\partial(\rho gz)}{\partial t} + \vec{u} \cdot \vec{\nabla}(\rho gz) \right]$$
(5)

$$\int dV \frac{d(\rho gz)}{dt} = \int dV \left[\rho \frac{d(gz)}{dt} + \frac{d\rho}{dt} (gz) \right]$$
(6)
$$= \int dV \left[\rho gw \right] + \int dx \int dy \left[g\eta \kappa \frac{\partial \rho}{\partial z} \right] - \int dV \left[g\kappa \frac{\partial \rho}{\partial z} \right]$$

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary	
Mechanical energy budget from the continuity and momentum equations					

Mass conservation equation \rightarrow potential energy equation

$$\int dV \frac{d(\rho gz)}{dt} = \int dV \left[\frac{\partial(\rho gz)}{\partial t} + \vec{u} \cdot \vec{\nabla}(\rho gz) \right]$$
(5)

$$\int dV \frac{d(\rho gz)}{dt} = \int dV \left[\rho \frac{d(gz)}{dt} + \frac{d\rho}{dt} (gz) \right]$$
(6)
=
$$\int dV \left[\rho gw \right] + \int dx \int dy \left[g\eta \kappa \frac{\partial \rho}{\partial z} \right] - \int dV \left[g\kappa \frac{\partial \rho}{\partial z} \right]$$

$$P_{E_P time} + P_{E_P advection} = P_{diffusive} + C_{E_P \to E_K} + C_{E_I \to E_P}$$
(7)

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary			
Mechanical energy budget from the continuity and momentum equations							
Global Integrals of Mechanical Energy Budget Terms in							

$$P_{E_{K}time} + P_{E_{P}time} + P_{E_{K}advection} + P_{E_{P}advection} =$$

$$P_{pressure} + P_{diffusive} + P_{input} - P_{output} + C_{E_{I} \rightarrow E_{P}}$$
(8)

KEadv.	PEadv.	press.	diffuse	$E_I \rightarrow E_P$	input	output
00284	.174	< .001	.00309	.0865	.868	1.06

7% imbalance of mechanical energy budget we ignore:

- partial time derivatives of KE and PE
- along-isopycnal contributions to power associated with buoyancy diffusion
- compressibility

- W

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation ●○	Summary		
Taylor diagrams of all five diagnostics						
Outline						

Introduction

- Motivation and what wave drag is
- The model and observations for comparison
- Putting wave drag into an ocean model
 Wave drag scheme choices
- 3 Energy budget
 - Mechanical energy budget from the continuity and momentum equations

Model evaluation

Taylor diagrams of all five diagnostics

Introduction	Putting wave d	Irag into an	ocean model

Energy budget

Summary

Taylor diagrams of all five diagnostics

Does wave drag ever make the model simulations in worse agreement with diagnostics informed by observations?

Observations, $1/12^{\circ}$ HYCOM without wave drag, $1/12^{\circ}$ HYCOM with wave drag, $1/25^{\circ}$ HYCOM without wave drag, $1/25^{\circ}$ HYCOM with wave drag, $1/10^{\circ}$ POP without wave drag (*Taylor*, 2001)

Introduction 00000000	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary	1			
There	are several details that co	ould use some	e work when	

putting wave drag into a model like:

what's the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary	1			

- what's the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

- what's the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

- what's the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what's the more appropriate wave drag scheme to use and in what context?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

- what's the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what's the more appropriate wave drag scheme to use and in what context?
- use of the full wave drag tensor that Garner (2005) formulated?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

- what's the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what's the more appropriate wave drag scheme to use and in what context?
- use of the full wave drag tensor that Garner (2005) formulated?
- use of a depth-dependent momentum deposition procedure that *Garner* (2005) formulated?

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

- what's the best way to specify the range of relevant wavenumbers for the internal waves to not be evanescent?
- are internal lee waves are generated by bottom flow-topography interactions in non-abyssal hill regions?
- physical derivation of wave drag parameters in non-abyssal hill regions?
- what's the more appropriate wave drag scheme to use and in what context?
- use of the full wave drag tensor that Garner (2005) formulated?
- use of a depth-dependent momentum deposition procedure that *Garner* (2005) formulated?
- use of an alternative, non-local momentum deposition procedure?

Introduction 0000000	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

• active feedback on velocities and stratification

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary	
Summary					

- active feedback on velocities and stratification
- diapycnal diffusivity is generally enhanced all the way up to the surface

Introduction 00000000	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

- active feedback on velocities and stratification
- diapycnal diffusivity is generally enhanced all the way up to the surface
- substantially less bottom drag dissipation with wave drag, and wave drag cannot be substituted for by boosting bottom drag

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary	
Summary					

- active feedback on velocities and stratification
- diapycnal diffusivity is generally enhanced all the way up to the surface
- substantially less bottom drag dissipation with wave drag, and wave drag cannot be substituted for by boosting bottom drag
- all other mechanical energy budget terms are spatially altered, but changed by little in their global integrals

Introduction	Putting wave drag into an ocean model	Energy budget	Model evaluation	Summary
Summary				

- active feedback on velocities and stratification
- diapycnal diffusivity is generally enhanced all the way up to the surface
- substantially less bottom drag dissipation with wave drag, and wave drag cannot be substituted for by boosting bottom drag
- all other mechanical energy budget terms are spatially altered, but changed by little in their global integrals
- wave drag either improves the model or does not make the model worse

Non-input/output mechanical energy budget terms

SST bias

SSH variance

