e Problem	The Tools	The results	Conclusions	Reference
	00	000000 0000 000		

Combining HYCOM, AXBTs and Polynomial Chaos Methods to Estimate Wind Drag Parameters during Typhoon Fanapi

Mohamed Iskandarani Ashwanth Srinivasan Carlisle Thacker Chia-Ying Lee Shuyi Chen, University of Miami Omar Knio Alen Alexandrian Justin Winokur Ihab Sraj, Duke University

> Funding: Office of Naval Research Gulf of Mexico Research Initiative

> > May 20, 2013

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Problem

Drag Parameterization Bayesian formulation of inverse problem

The Tools Polynomial Chaos

The results PC Analysis The inference posteriors Variational Solution

Conclusions

- Blue circles: aircraft observations (French et al., 2007),
- red: wind tunnel (Donelan et al., 2004),
- green: drop sondes (Powell et al., 2003),
- magenta: HYCOM fit to COARE 2.5,
- Problem: V_{max} and C_D^{max} are not well-known and does C_D decrease for V > V_{max} as drop sondes suggest?

The results

Conclusion

(日) (日) (日) (日) (日) (日) (日)

Inverse Modeling Problem

Perturb C_D by introducing 3 control variables (α, V_{max}, m)

$$C_D' = \alpha C_D \text{ for } V < V_{\text{max}}$$
 (1)

$$C_D' = \alpha [C_D + m(V - V_{\text{max}})] \text{ for } V > V_{\text{max}}$$
 (2)

- multiplicative factor $0.4 \le \alpha \le 1.1$
- vary V_{max} between 20 and 35 m/s
- *m* is a linear slope modeling decrease for $V > V_{\rm max}$ with $-3.8 \times 10^{-5} \le m \le 0$
- Use ITOP data to learn about likely distribution of α, V_{max} and m.

Bayes Theorem: $p(\theta \mid T) \propto p(T \mid \theta) p(\theta)$

• Likelihood: $\epsilon = T - M$ is normally distributed

$$p(\boldsymbol{T} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right)$$
(3)

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bayes Theorem: $p(\theta \mid T) \propto p(T \mid \theta) p(\theta)$

• Likelihood: $\epsilon = T - M$ is normally distributed

$$p(\boldsymbol{T} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right)$$
(3)

- σ^2 unknown, treated as hyper-parameter. Assume a Jeffreys prior

$$p(\sigma^2) = \begin{cases} \frac{1}{\sigma^2} & \text{for } \sigma^2 > 0, \\ 0 & \text{otherwise.} \end{cases}$$
(4)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Bayes Theorem: $p(\theta \mid T) \propto p(T \mid \theta) p(\theta)$

• Likelihood: $\epsilon = T - M$ is normally distributed

$$p(\boldsymbol{T} \mid \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right)$$
(3)

• σ^2 unknown, treated as hyper-parameter. Assume a Jeffreys prior

$$p(\sigma^2) = \begin{cases} \frac{1}{\sigma^2} & \text{for } \sigma^2 > 0, \\ 0 & \text{otherwise.} \end{cases}$$
(4)

• Uninformed priors for α , V_{max} and m:

$$p(\{\alpha, V_{\max}, m\}) = \begin{cases} \frac{1}{b_i - a_i} & \text{for } a_i \leq \{\alpha, V_{\max}, m\} \leq b_i, \\ 0 & \text{otherwise}, \end{cases}$$
(5)

where $[a_i, b_i]$ denote the parameter ranges.

The Problem	The Tools	The results	Conclusions	References
○○ ○●	00	000000 0000 000		

$$p(\{\alpha, V_{\max}, m\}, \sigma^2 | \mathbf{T}) \propto \left[\prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right) \right]$$
$$p(\sigma^2) p(\alpha) p(V_{\max}) p(m)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$p(\{\alpha, V_{\max}, m\}, \sigma^2 | \mathbf{T}) \propto \left[\prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right) \right]$$
$$p(\sigma^2) p(\alpha) p(V_{\max}) p(m)$$

 Build full posterior with Markov Chain Monte Carlo (MCMC) MCMC requires O(10⁵) estimates of M_i: prohibitive

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$$p(\{\alpha, V_{\max}, m\}, \sigma^2 | \mathbf{T}) \propto \left[\prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right) \right]$$
$$p(\sigma^2) p(\alpha) p(V_{\max}) p(m)$$

 Build full posterior with Markov Chain Monte Carlo (MCMC) MCMC requires O(10⁵) estimates of M_i: prohibitive

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Solve for center and spread of posterior minimization problem requiring access to cost function gradient and Hessian: Needs an adjoint model

$$p(\{\alpha, V_{\max}, m\}, \sigma^2 | \mathbf{T}) \propto \left[\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(T_i - M_i)^2}{2\sigma^2}\right) \right]$$
$$p(\sigma^2) p(\alpha) p(V_{\max}) p(m)$$

- Build full posterior with Markov Chain Monte Carlo (MCMC) MCMC requires O(10⁵) estimates of M_i: prohibitive
- Solve for center and spread of posterior minimization problem requiring access to cost function gradient and Hessian: Needs an adjoint model
- Rely on Polynomial Chaos expansions to replace HYCOM by a polynomial series that could be either summed for MCMC or differentiated for the gradients.

What is Polynomial Chaos

Series Representation of Model Output

$$M(\mathbf{x}, t, \theta) = \sum_{k=0}^{P} M_k(\mathbf{x}, t) \psi_k(\theta)$$
(6)

(ロ) (同) (三) (三) (三) (○) (○)

- $M(\mathbf{x}, t, \theta)$: a model output (aka observable)
- $M_k(\mathbf{x}, t)$: series coefficients
- $\psi_k(\theta)$: orthogonal basis functions w.r.t. $p(\theta)$

• mean:
$$E[M] = \langle M, \psi_0 \rangle = \sum_{k=0}^{P} M_k(\mathbf{x}, t) \langle \psi_k, \psi_0 \rangle = M_0(\mathbf{x}, t)$$

- Variance: $E\left[\left(M E[M]\right)^{2}\right] = \sum_{k=1}^{P} M_{k}^{2}(\boldsymbol{x}, t)$
- Basic Questions
 - How to choose ψ_k ? Legendre polynomials
 - How to determine the coefficients *M_k*? Projection
 - Where to truncate the series, P? Monitor Variance

The Problem	The Tools	The results	Conclusions
00	0.	000000	
		000	

How do we determine PC coefficients

- Series: $M(\mathbf{x}, t, \theta) = \sum_{k=0}^{P} M_k(\mathbf{x}, t) \psi_k(\theta)$
- Projection:

$$M_k(\mathbf{x}, t) = \langle \mathbf{M}, \psi_k \rangle = \int M(\mathbf{x}, t, \theta) \psi_k(\theta) \rho(\theta) \mathrm{d}\theta$$

Approximate integral with numerical Quadrature

$$M_k(\boldsymbol{x},t) \approx \sum_{q=1}^{Q} M(\boldsymbol{x},t,\theta_q) \psi_k(\theta_q) \omega_q$$

- θ_q/ω_q quadrature points/weights
- Quadrature requires an ensemble run at θ_q
- Here we Used Adaptive quadrature requiring 6-iteration levels for a total of 67 realizations

Figure: Fanapi's JTWC track (black curve) and paths of C-130 flights. The yellow circles on the track represent the typhoon center at 00:00 UTC. The circles on the flight paths mark the 119 AXBT drops. The 42×42 km² analysis box is also shown.

Figure: Comparison of HYCOM vertical temperature profiles with AXBT observations on Sep 14 (left), 15 (center) and 17 (right). Temperature averages over the first 50 m are shown in the legend.

Problem	The Tools	The results	
	00	00000	
		0000	

Conclusions

References

PC Representation Errors

Evolution of the area-averaged SST realizations (blue) and of the corresponding PC estimates (red). The normalized rms error (right panel) remains below 0.1% for the duration of the simulation.

Figure: Normalized error between realizations and the corresponding PC surrogates at different depths; Top row: 00:00 UTC Sep 15; bottom row: 00:00 UTC Sep 18.

・ロット (雪) ・ (日) ・ (日)

э

50m-deep mixed layer 2°C cooling after Fanapi arrives Uncertainties confined to top 50 m.

oo

The results

Conclusions

References

SST Response Surface

Figure: SST response surface as function of α and V_{max} , with fixed m = 0. Plots are generated on different days, as indicated. SST's dependence on V_{max} decreases after 09/17.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

oo

The results

Conclusions

・ロン ・四 と ・ ヨ と ・ ヨ と

э.

References

Markov Chain Monte Carlo

Figure: Top row: chain samples for V_{max} , *m* and α . Bottom row: chain samples for σ^2 generated for different days, as indicated.

Figure: Posterior distributions for the drag parameters (top) and the variance between simulations and observations (bottom). The numbers show the Kullback-Liebler divergence quantifying the distance between 2 prior and posterior pdfs, i.e. the information gain.

I he lool

The results

Conclusion

References

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Remarks on posteriors

- V_{max} exhibits a well-defined peak at 34 m/s.
- Posterior of *m* resembles prior. Data added little to our knowledge of *m*.
- α shows a definite peak at 1.03 with a Gaussian like-distribution.
- $\sqrt{\sigma^2}$ is a measure of the temperature error expected. This error grows with time from about 0.75° to 1°C.

The Too

The results

Conclusions

References

Joint posterior PDFs

Figure: Left: joint posterior distribution of α (left) and V_{max} ; right: joint posterior of α and σ^2 , generated for Sep 17-Sep 18. Single peak located at $V_{max} = 34$ m/s and $\alpha = 1.03$. The posterior shows a tight estimate for α with little spread around it.

Figure: Optimal wind drag coefficient C_D using MAP estimate of the three drag parameters. The symbols refer to AXBT data used in the Bayesian inference.

Conclusions

References

Variational Form

 maximize the posterior density, or equivalently, minimize the negative of its logarithm

$$\mathcal{J}(\alpha, V_{max}, m, \sigma_1^2, \sigma_2^2, \sigma_3^2, \sigma_4^2, \sigma_5^2) = \sum_{d=1}^5 \left[J_d + \left(\frac{n_d}{2} + 1 \right) \ln(\sigma_d^2) \right]$$
(7)

where J_d is the misfit cost for day d, the $\ln(\sigma_d^2)$ terms come from the normalization factors of the Gaussian likelihood functions and from the Jeffreys priors.

• The expression for J_d is:

$$J_d(\alpha, V_{max}, m, \sigma_d^2) = \frac{1}{2\sigma_d^2} \sum_{i \in \mathcal{I}_d} [M_i - T_i]^2 , \qquad (8)$$

where \mathcal{I}_d is the set of n_d indices of the observations from day *d*.

The Tools

Conclusion

References

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Adjoint-Free Gradients

Minimization requires cost function gradients

$$\begin{bmatrix} \frac{\partial \mathcal{J}}{\partial \alpha}, \frac{\partial \mathcal{J}}{\partial V_{\max}}, \frac{\partial \mathcal{J}}{\partial m} \end{bmatrix} = \sum_{d=1}^{5} \frac{1}{\sigma_d^2} \left(\sum_{i \in \mathcal{I}_d} (M_i - T_i) \left[\frac{\partial M_i}{\partial \alpha}, \frac{\partial M_i}{\partial V_{\max}}, \frac{\partial M_i}{\partial m} \right] \right)$$

Compute them from PC expansion

$$\left[\frac{\partial M}{\partial \alpha}, \frac{\partial M}{\partial V_{\max}}, \frac{\partial M}{\partial m}\right] = \sum_{k=0}^{P} \hat{M}_{k}(\boldsymbol{x}, t) \left[\frac{\partial \psi_{k}}{\partial \alpha}, \frac{\partial \psi_{k}}{\partial V_{\max}}, \frac{\partial \psi_{k}}{\partial m}\right]$$

- $\frac{\partial \psi_k}{\partial \alpha}$ easy to compute
- No adjoint model needed
- For Hessian just differentiate above again.

Figure: Posterior probability distributions for (top) drag parameters and (bottom) variances σ_d^2 at selected days using variational method and MCMC. The vertical lines correspond to the MAP values from MCMC and optimal parameters found using the variational method.

Conclusions & Future Work

- Identified drag parameters from ITOP observations during typhoon Fanapi.
- PC instrumental to make calculations tractable either through MCMC or through adjoint-free minimization
- $V_{\rm max} \approx 34$ m/s
- Data uninformative regarding decrease in C_D
- $C_D^{\rm max}$ peaking around 2.3 imes 10⁻³
- Surface temperature measurements more valuable than ones at depths > 75 m.
- Inference of V_{max} and *m* hampered by lack of observation at wind speeds > 35 m/s.
- Future: Hurricane Model & other air-sea exchange coefficients

he Problem	The Tools	The results 000000 0000 000	Conclusions	References

Publications

- I. Sraj, M. Iskandarani, A. Srinivasan, W. C. Thacker, and O.M. Knio, Computing Model Gradients from a Polynomial Chaos based Surrogate for an Inverse Modeling Problem *Monthly Weather Review*, in revision.
- J. Winokur, P. Conrad, I. Sraj, M. Iskandarani, A. Srinivasan, W.C. Thacker, Y. Marzouk, O. M. Knio, A priori testing of sparse adaptive polynomial Chaos expansions using an OGCM database, *Computational Geosciences*, in review.
- I. Sraj, M. Iskandarani, A. Srinivasan, W. C. Thacker, J. Winokur, A. Alexanderian, C-Y Lee S. S. Chen, O.M. Knio, Bayesian Inference of Drag Coefficient Parameters using AXBT data from Typhoon Fanapi, *Monthly Weather Review*, doi:10.1175/MWR-D-12-00228.1.
- A. Alexanderian, J. Winokur, I. Sraj, M. Iskandarani, A. Srinivasan, W. C. Thacker, and O. M. Knio, Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach, *Computational Geosciences*, 16, Vol 3, pp 757–778, 2012.
- W. C. Thacker, A. Srinivasan, M. Iskandarani, O. M. Knio, and M. Le Henaff. Propagating oceanographic uncertainties using the method of polynomial chaos expansion. *Ocean Modelling*, **43**–**44**, pp 52–63, 2012.
- A. Srinivasan, J. Helgers, C. B. Paris, M. LeHenaff, H. Kang, V. Kourafalou, M. Iskandarani, W. C. Thacker, J. P. Zysman, N. F. Tsinoremas, and O. M. Knio. Many task computing for modeling the fate of oil discharged from the deep water horizon well blowout. In *Many-Task Computing on Grids and Supercomputers* (*MTAGS*), 2010 IEEE Workshop on, pages 1–7, November, 2010. IEEE.

Bibliography

Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie,
H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. *Geophysical Research Letters*, **31 (L18306)**, 1–5, doi:doi:10.1029/2004GL019460, URL http://dx.doi.org/10.1029/2004GL019460.

- French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. part i: Momentum flux. *Journal of the Atmospheric Sciences*, 64, 1089–1102, doi:doi:10.1175/JAS3887.1.
- Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. *Nature*, **422**, 279–283, doi:doi:10.1038/nature01481, wind measurement and wind stress calculation in (observed) hurricane conditions.