An eddy-resolving ocean reanalysis using the 1/12° global HYbrid Coordinate Ocean Model (HYCOM) and the Navy Coupled Ocean Data Assimilation (NCODA) scheme

O.M Smedstad¹, E.J. Metzger², R.A. Allard², R. Broome¹, D.S. Franklin¹ and A.J. Wallcraft²

> ¹QinetiQ North America ²Naval Research Laboratory

Layered Ocean Model Workshop 21-23 May 2013 Ann Arbor, Michigan

HYCOM/NCODA Ocean Reanalysis

- Of those ocean reanalyses performed to date, only a few have eddy-permitting resolution and none are capable of fully resolving oceanic mesoscale features (eddies and current meanders) across the globe
- This project addresses the need for a long time period eddy-resolving ocean reanalysis
- Funded by the DoD Modeling and Simulation Coordination Office (M&S CO)
- Goal to the sponsor: provide physically consistent environmental scenarios for planning, wargaming and scenarios to support the warfighter
- Numerous other applications and research opportunities

HYbrid Coordinate Ocean Model

Tri-pole latitudinal grid resolution (km)

• Thermodynamic "energy loan" ice model

Atmospheric Forcing NCEP Climate Forecast System Reanalysis (CFSR) Surface Specific Humidity (kg/kg x 10²) CFSR-sea spchum 20040321 00Z

- Time frame: 1993-2012 (altimeter period)
- Horizontal resolution: 0.3125° gaussian
- Temporal resolution: 1-hourly
- QuikSCAT scaling
- Inputs:
 - Bulk-derived wind stress
 - Wind speed
 - Radiative fluxes
 - Thermal fluxes
 - Precipitation
 - Net Surface Shortwave (W/m²) CFSR-sea solrad 20040321 00Z

Spin-up and Reanalysis Simulations

- Spin-up 1/12° non-assimilative global HYCOM with CFSR climatology (12 model years)
- Extend climatological spin-up with 1993-2012 1-hourly CFSR forcing using 1/12° nonassimilative global HYCOM
- Extend climatological spin-up with Oct 1992-2012 1-hourly CFSR forcing using 1/12° assimilative HYCOM/NCODA

– Begin in Oct 1992, currently in May 2000

Navy Coupled Ocean Data Assimilation (NCODA)

velocity (u,v)

Altimeter Observations

Observations to be Assimilated via NCODA August 16 – September 16 1999 Temperature Observations 16 Aug 99 122 9 km grid

SSH Observations: 3-day data windowSST Observations: 24 hour data windowProfiles:12-day data window

Modular Ocean Data Assimilation System (MODAS) used as vertical projection of the satellite altimeter observations

Temperature Verification in the Pacific August 1998 to August 1999

SST Mean Error

SST Skill Score

Mean SSH 1993-1999

Kuroshio and Gulf Stream SSH with SSTbased frontal analysis

Frontal analysis < 4 days old = white, Frontal analysis ≥ 4 days old = black Frontal analysis performed by the Naval Oceanographic Office

Mean SSH Gulf of Mexico Region

t mean: 1995.00-

Gulf of Mexico SSH and SST with SSTbased frontal analysis

March 3 1999

Frontal analysis < 4 days old = white, analysis ≥ 4 days old = black Frontal analysis performed by the Naval Oceanographic Office

1993-1999 Mean SSH in Luzon Strait

Forced with 1 hourly CFSR winds and thermal forcing

1993-1999 mean from HYCOM forced with 1 hourly CFSR winds and thermal forcing

Velocity Cross-section Along Luzon Strait

Sb-ADCP data (top) vs. 1/12° Global HYCOM (bottom) in the upper 300 m Section along 21°N between 118.5°E and 124.0°E

1993-1999 mean from HYCOM forced with 1 hourly CFSR winds and thermal forcing

Velocity Cross-sections East of Taiwan

Sb-ADCP data (top) vs. 1/12° Pacific HYCOM (bottom) in the upper 300 m Sections at 22°N, 23°N, 24°N and 25°N

23°N

22°N

24°N

Sb-ADCP data from Liang et al. (2003, DSR Pt. II) 1993-1999 mean from HYCOM forced with 1 hourly CFSR winds and thermal forcing

Note how the two-core Kuroshio merges to a single jet in both the observations and HYCOM from the south to north along the Taiwan coast

WOCE PCM-1 Transport

From Johns et al. 2001

WOCE PCM-1 Transport

WOCE PCM-1 transport (black) via the adjusted geostrophic method from Johns et al. (2001) versus full water column transport from the global HYCOM/NCODA Ocean Reanalysis (red) using those model gridpoints between moorings M1 – M4. A ten day filter has been applied to both time series. The unfiltered mean and standard deviation for PCM-1 are 22.0 ± 4.8 Sv while that for global HYCOM is 23.7 ± 9.8 Sv. The correlation coefficient is 0.78.

Computational Requirements

- Computer time via the DoD High Performance Computing Modernization Office
- Currently integrating the ocean reanalysis on the Navy DoD Supercomputing Resource Center (DSRC) IBM iDataPlex
- Using 949 processors
 - Integrate up to 22 model days every 24 hrs of wall time
 - It will take ~8 months to integrate the remainder

Output and Storage

- HYCOM 3D native grid archive files (compressed):
 - Single hour: ~7 Gb
 - Saving 3-hourly output:
 - ~20 Tb / model year
 - ~340 Tb for the entire reanalysis
- HYCOM 3D constant .08° grid (±80° lat) netCDF files remapped to 40 z-levels (compressed):
 - Single hour: ~1.2 Gb
 - Saving 3-hourly output:
 - ~3.5 Tb / model year
 - ~59 Tb for the entire reanalysis
- Subset of the output will be placed on the hycom.org data server
 - When is still to be determined