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brlefly describe the NRL effort to include tidal forcing in the global ocean
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drag is tuned to give good agreement with the pelagic tide gauges Maarten Buijsman will
e on tuning of the bottom drag and dissipation
) 1:mode| will be used to provide 3-d (including internal tides) boundary conditions for regional

T arl
13, CPOSN

B
,'rsvalldated against 102 pelagic tide gauges and data-assimilative tide models
Pres ﬂy have a good forward model, but not a forecast quality model
= Phase errors in barotropic tide affect the baroclinic tide
a;'lfbtropic and internal tidal kinetic energy in the model compares well with historical
= = current meters and data-assimilative tide models
, - — Recent work by Patrick Timko in Atlantic Ocean comparison paper published in JGR-Oceans and
~  _ ~ submitted global paper
— -~ —  Barotropic tidal velocities are difficult to estimate from deep ocean current meter moorings
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* Tidal resonances and bathymetry play an important role in global tide modeling

* The current 3DVAR mesoscale data assimilation scheme (NCODA) works in the tides in the
model

 Model internal waves can play an important role in the boundary conditions for regional
models and global HYCOM can be reproduced in regional twin experiments




deling tides in the global model
, 0 ba[model,%bﬁdy forces due to the tidal

Y1) ™ T o y—

~

ximation) have been added
'i"f'cing with 8 constituents:
2l ldlurnal M,, S,, N, and K,
= | urnal 0,, P, Q; and K,
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‘bgraphic wave drag is applied to the tidal motions
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=== ;— The form of the drag is generalized from the linear
topographic wave drag as proposed by Jayne and St.
Laurent (2001), but tuned to minimize the difference with
the 102 pelagic tide gauges using a barotropic version of
the model

* Maarten Buijsman will talk about refinements in the wave drag
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RMS Error 7.5 cm (5.6 amp, 5.0 phase) RMS Error 2.3 cm (1.6 amp, 1.6 phase)




elative to TPXO
amplitude and
de weighted phase
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SWAHich can be re-written in a form involving

d1fferences only and amplitude
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— welght phase errors
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MSE = [E (Anycom = Arexo) 2]
+
[AnycomPrexo (1 — cos(Puycom — Prpxo))]
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Kinetic Energy of the M, Tide in HYCOM
and_TPXO y Mo FS — —
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Atlantic, Southern Ocean and
‘Southeast Indian Ocean

No independent verification
of the tidal velocities

Difference
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Comparison to historical current meter
Sdata (from Timko et al. JGR Oeeans
| submitted

HYCOM vs. Observations - Latitude 51.983° N Longitude 169.517° W
M2 Semi-major Axis M2 Greenwich Phase
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Comparison to historical current

meters
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/1 current meter
moorings
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em the global model compare
fnplltude and phase with the
-aSS|m|Iat|ve tidal models in
itude and phase. Although HYCOM
> ,__,A;f;'_.;-.# to overestimate the amplitude

:’ |f‘n+arger scatter than FES or GOT4.7
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— The difference between the data-

_ assimilative models is much smaller
than the difference between the global
model and any of the data-assimilative
tide models with the possible exception

of the Hamburg tidal model

omparison Bf‘Barotropic HYCOM Tides with Data
Assimilative Tide Models.
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he Barotropic velocity is difficult to estimate
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Sampled HYCOM M2 Amplitude

HYCOM M, Amplitude

The tides in the global model overestimate the barotropic tidal
velocities from vertical regressions at historical current meter
moorings. The barotropic velocities estimated by regression in the
model with the same sampling in the vertical. Phases are poorly
recovered
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J-v O occurs in the Southern Ocean

ed fferences in the model bathymetry
geometry exist in the Southern Ocean
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< TP; "O extends the ocean to beneath the
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ﬂoatlng ice shelves and reduces the ocean
depth by the thickness of the shelves
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mprovements underway for the tides in HYCOM
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A large difference between the data-assimilative TPXO model and HYCOM is the treatment of the
floating ice shelves around Antarctica

Using the TPXO tides as a boundary condition at the floating ice shelves reduces the rms difference (a
and b) and improves the skill (c and d) over much of the globe, not just the Southern Ocean.



Resonances affect the tidal amplitudes
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Zeng, Arbic, Muller and Godwin
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-~

ey

he Sea of Okhotsk creates

ices in the tidal amplitudes over
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- Effect of Tidal Resonance .
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outhern Ocean BC Hudson Bay & Southern Ocean BC

GLBt0.72 42.0 vs TPXO Elevation 2004: RMS Error GLBt0.72 42.7 vs TPXO Elevation 2004: RMS Error
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If the Hudson Strait is blocked in the model and replaced with the TPXO M, transport, then we see substantial
improvement in the North Atlantic, reducing the RMS error and increasing the skill. Unfortunately, we can’t
use this approach in the baroclinic global model with sea ice.

Tidal resonances represent a challenge for all forward (non-assimilative) tide models.
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-%te data into the model

e O ommant length scale of the assimilation is
séd upon mesoscale varibility

,,:::: ,..“Ehe spatial scale of the low vertical mode internal

gi"' ~ tides is similar to the scale of mesoscale eddies

e Prellmlnary experiments show that the 3DVAR
scheme doesn’t degrade the tidal solution but
does add additional internal wave variability
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" HYCOM/NCODA

ith tidal forcing on 1/12° domaln

August 2008 animation of the daily variance of hourly steric SSH

Tides — no data assimilation Data a53|m|Iat|on no tldes
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Data assimilation with tides

Transient waves from the
insertion of NCODA analysis
increments

i N Strong generation of internal
N o TR tides at ‘hot spots’ that can
gl 5 g propagate 1000s of km away

from generation regions — need a
global model with tides
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" HYCOM/NCODA

ith tidal forcing on 1/12° domaln

August 2008 animation of the daily variance of hourly steric SSH

Tides —no data assimilation Data a53|m|Iat|on no tldes
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Data assimilation with tides
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" HYCOM/NCODA
vith tidal forcing on 1/12° domain

August 2008 animation of differences between the variances of
steric SSH of(tides only + DA without tides) minus DA with tides
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e Data assimilation does not appear to be adversely
affecting the tidal solution

e Tides do not adversely affect the large scale circulation
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. Ifthe global model with tides is accurate
enough it can provide complete boundary
conditions for regional models



Impact of internal waves on regional
ocean models
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— The model tidal amplitudes compare well with the data-assimilative models
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e dlil resonances and bathymetry play an important role in global tide modeling
'-‘-"%_: -"-*’." . Forcing the southern boundary with TPXO tides improves the global solution

~+ The current 3DVAR mesoscale data assimilation scheme (NCODA) works in the
tides in the model

* Model internal waves can play an important role in the boundary conditions for
regional models and global HYCOM can be reproduced in regional twin
experiments



