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A global tuning experiment for the semidiurnal tide is performed with a barotropic model. The model is
forced with the M2 equilibrium tide and accounts for the self-attraction and loading (SAL) term. In addi-
tion to a quadratic drag, various linear internal wave drag terms adjusted by a scale factor of Oð1Þ are
applied. The drag terms include the original Nycander (2005) tensor scheme, the Nycander tensor scheme
reduced at supercritical slopes, and their scalar sisters, a Nycander scalar scheme computed for additional
abyssal hill roughness, and the Jayne and St. Laurent (2001) scalar scheme. The Nycander scheme does
not have a tunable parameter, but to obtain the best tidal solutions, it is demonstrated that some tuning
is unavoidable. It is shown that the scalar Nycander schemes yield slightly lower root-mean square (RMS)
elevation errors vs. the data-assimilative TPXO tide model than the tensor schemes. Although the simu-
lation with the optimally tuned original Nycander scalar yields dissipation rates close to TPXO, the RMS
error is among the highest. The RMS error is lowered for the reduced schemes, which place relatively
more dissipation in deeper water. The inclusion of abyssal hill roughness improves the regional agree-
ment with TPXO dissipation rates, without changing the RMS errors. It is difficult to have each ocean
basin optimally tuned with the application of a constant scale factor. The relatively high RMS error in
the Atlantic Ocean is reduced with a spatially varying scale factor with a larger value in the Atlantic.
Our best global mean RMS error of 4.4 cm for areas deeper than 1000 m and equatorward of 66� is among
the lowest obtained in a forward barotropic tide model.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The tidal motion of the world’s oceans is powered by about
3.5 TW of energy input (Egbert and Ray, 2003). Initially it was
believed that nearly all of this energy is dissipated through bottom
friction in shallow coastal shelf seas where the barotropic tide
velocities are large (Taylor, 1919). Hence, in early regional baro-
tropic tide models, the tidal energy was dissipated with linearized
or quadratic bottom drag that mostly operated in coastal oceans
(Schwiderski, 1980; Le Provost et al., 1994). Often, the drag coeffi-
cients were tuned to improve the agreement with elevation
observations.

Munk (1966) and Munk and Wunsch (1998) suggested, and
indirectly showed, that there could be significant barotropic tidal
dissipation in the abyssal ocean. Egbert and Ray (2000) inferred
surface tide dissipation rates from an inverse barotropic tide model
with assimilated satellite altimetry, and found that about a third of
this barotropic tide dissipation occurs in the deep ocean, invalidat-
ing the early assumption that all tidal energy was dissipated in
shallow water. Egbert and Ray (2000) associated the deep water
dissipation with the energy transfer from the barotropic to the
baroclinic tide at rough topography as suggested by Munk and
Wunsch (1998). Linear theory for the generation of internal waves
also predicts substantial barotropic tide dissipation in the deep
ocean through the generation of internal tides (e.g. Nycander,
2005).

The energy conversion from the barotropic to the baroclinic tide
at rough topography can be represented through the implementa-
tion of a linear wave drag (Stigebrandt, 1999). Jayne and St. Laurent
(2001) applied a linear wave drag scheme in the momentum equa-
tion of a forward global barotropic tide model. This reduced the
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root-mean-square elevation error with observations from 16.4 to
10.1 cm, when 8 tidal constituents were used. Moreover, the baro-
tropic dissipation rates predicted with their linear wave drag
scheme are in agreement with rates derived from TPXO – an
inverse tidal solution based on altimetry (Egbert et al., 1994). Sim-
ilarly, Egbert et al. (2004), Arbic et al. (2004) and Green and
Nycander (2013), who applied forward barotropic tide models,
and Lyard et al. (2006), who applied a data-assimilative barotropic
tide model, also found that tidal elevations and energetics
improved when internal wave drag schemes, with and without
tunable parameters, were applied.

Some schemes, e.g. by Jayne and St. Laurent (2001) and Zaron
and Egbert (2006), are based on a linear scaling relationship and
rely on a tunable parameter. Other drag schemes, e.g. by Egbert
et al. (2004), Garner (2005) and Nycander (2005), are derived from
linear theory similar to Bell (1975) and do not have a tunable
parameter. Green and Nycander (2013) show that without tuning,
the Nycander parameterization in a barotropic model predicts glo-
bal dissipation rates close to TPXO7.2 rates. However, the use of
schemes without a tunable parameter does not guarantee an opti-
mal prediction of elevations and dissipation rates. For example, the
dissipation rates and elevation root-mean-square errors may differ
depending on the global bathymetry and stratification databases
used. Another motivation for tuning is that the bathymetric dat-
abases do not resolve all abyssal features. Melet et al. (2013) dem-
onstrated that the regional and global dissipation rates analytically
computed with the Nycander scheme are increased due to the
inclusion of abyssal hill roughness on ocean spreading ridges
(Goff and Arbic, 2010). Moreover, a higher resolution bathymetric
grid increases the linear wave drag strength (Nycander, 2005;
Zilberman et al., 2009), implying the need for some tuning.
Although the linear theory of these parameterizations is applicable
from the acoustic limit (small excursion lengths) to quasi-steady
flow (large excursion lengths) (Bell, 1975; Nycander, 2005), the
theory breaks down on supercritical slopes, i.e. when the slope is
steeper than the internal tide beam. Hence, these schemes overes-
timate the conversion at supercritical topography (Nycander,
2005). When a correction is applied at supercritical topography
(Nikurashin and Ferrari, 2011; Scott et al., 2011) the overall drag
is reduced (Melet et al., 2013), further justifying the application
of a tunable parameter.

The schemes derived from linear theory by Bell (1975) are sec-
ond order tensors, whereas the schemes based on a scaling relation-
ship are scalars. The components of the tensor are functions of the
directionality of the topographic roughness. As a consequence, dis-
sipation strength is governed by the direction of the flow relative to
the rough topography. In scalar schemes the dissipation is indepen-
dent of the flow direction. According to Egbert et al. (2004), the sca-
lar and tensor schemes they tested produced similar deep-water
dissipation rates and patterns after tuning. This suggests that the
directionality of the tensor scheme may not provide substantial
additional benefit compared to the scalar schemes. This is relevant,
because it is easier to implement a scalar than a tensor scheme in
3D models that have both tidal and atmospheric forcing (Arbic
et al., 2010).

In this study we utilize the Nycander (2005) and Jayne and St.
Laurent (2001) schemes, and their modifications, in global baro-
tropic HYCOM forced with only the M2 tide. The M2 tide is the larg-
est tidal constituent, comprising about 70% (2.4 TW) of the tidal
energy input of 3.5 TW (Egbert and Ray, 2003). In comparison, the
largest diurnal constituent, K1, contributes only 10% to the total
input. We test the effects of the correction at supercritical slopes
and the enhanced roughness due to abyssal hill topography on
the wave drag strength. The effects of the additional roughness
due to abyssal hill topography have been studied in a linear analyt-
ical model by Melet et al. (2013) and a numerical three-dimensional
model by Timko et al. (2009) but never in a barotropic tide model.
We perform a tuning experiment for each drag scheme to check if
the lowest root-mean square (RMS) elevation errors versus the
altimetry-constrained TPXO8-atlas and 151 pelagic tide gauges
(Ray, 2013) coincide with the most optimal global, basin-wide,
and regional dissipation rates based on the TPXO4, TPXO6.2,
TPXO7.2, and TPXO8-atlas inverse models. Although Green and
Nycander (2013) compared the performance of the Jayne and St.
Laurent (2001) and Nycander, 2005 schemes in a barotropic model,
they did not explore whether their RMS elevation errors and dissi-
pation rates could be improved by applying a scale factor. A better
understanding of the performance of these internal wave drag
schemes in tidal models is relevant for climate models that use sim-
ilar parameterizations to represent the breaking of internal tides
(Simmons et al., 2004b), which provide most of the vertical turbu-
lent mixing in the deep ocean.

In the next section we discuss the model configuration, the linear
wave drag schemes, and the model diagnostics. In the results sec-
tion the model’s elevation root-mean-square errors and dissipation
rates are evaluated globally, per basin, and regionally. We finish in
Section 4 with discussion and conclusions.

2. Methodology

2.1. Ocean model configuration

HYCOM is a community ocean model (http://hycom.org) that
uses a generalized (hybrid isopycnal/terrain-following/z-level)
vertical coordinate (Bleck, 2002). However, here we configure it
for one layer and for tide forcing only. The generic one-layer shal-
low water momentum equation with tidal forcing and the continu-
ity equation read

@u
@t
þu �ruþ f k�u¼�grðg�gEQ �gSALÞ�

CDjuju
H
�vC �u

H
�F ð1Þ

and

@g
@t
¼ �r � ð½H þ g�uÞ; ð2Þ

where t is time, u is the horizontal velocity vector, g is the tidal ele-
vation, g is the gravitational acceleration, f is the Coriolis parameter,
k is the vertical unit vector, H is the resting water depth, CD is the
quadratic bottom drag coefficient, C is a scalar or second-order ten-
sor to represent the drag due to internal tide generation, v a scale
factor, F is the friction due to the eddy viscosity, and gEQ and gSAL

respectively refer to the equilibrium tidal forcing and self attraction
and loading term. The quadratic drag coefficient is 0.0025 in deep
water and a function of depth in shallow water only when
CD ¼ ½j= logð0:5H=z0Þ�2 > 0:0025 (Schlichting, 1968), with the von
Karman coefficient j ¼ 0:4 and the bottom roughness z0 ¼ 10 mm.

The model spans the entire globe north of 86�S, with a Mercator
grid from 66�S to 47�N, at a resolution of 0:08� cosðlatitudeÞ by
0.08� (latitude by longitude) and a bipolar Arctic patch north of
47�N, i.e. the model uses a tripole grid (Murray, 1996). The merid-
ional (latitudinal) grid resolution is held constant south of 66�S for
computational efficiency. The average zonal (longitudinal) resolu-
tion varies from 9 km at the equator to 7 km at mid-latitudes
(e.g. at 40�N) and 3.5 km at the north pole. The bottom topography
was constructed from the GEBCO_08 topographic database, version
20091120 (http://www.gebco.net), which has a resolution of
30 arc seconds. However, in the deep ocean the effective resolution
is much coarser, and abyssal hills on ocean spreading ridges are not
resolved (Goff and Arbic, 2010). The model’s land-sea boundary is
at the 0-m isobath but depths shallower than 5 m are set to 5 m.
Numerous hand-edits have been performed to improve coastlines
and sill depths in key straits and passages. In order to model the

http://hycom.org
http://www.gebco.net
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Fig. 1. Global percentile of HYCOM sea surface height root-mean-square in time
error versus TPXO8-atlas for the best performing JSL scheme with scale
factor = 0.375.
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tides under the large Antarctic floating ice shelves, our bottom
topography south of 60�S and shallower than 1200 m is merged
with bathymetry used in Arbic et al. (2004), which treats the extent
of the water under the shelf as the ocean depth.

The model is forced with the principal lunar semidiurnal M2

tide with nodal corrections (Pugh, 1987). It is spun up from Decem-
ber 1, 2003 and run with various internal wave drag schemes. Each
simulation lasts 33 days, with hourly elevation and velocity data
saved for the last three days. These are run through a harmonic
analysis tool (Foreman, 1977) to obtain amplitudes and phases
independent of the nodal correction. In most grid points the fit is
excellent, with about 99.9% of the variance explained by the M2

tide. The harmonic constants are used to compute root-mean
square errors or synthetic time series from which offline dissipa-
tion rates are computed.

2.2. Implementation of self-attraction and loading

Hendershott (1972) showed that global numerical tide models
must account for self-gravitation of the ocean tide, solid earth
deformation due to the load of the ocean tide, and perturbations
to the gravitational potential due to the self-gravitation of the solid
earth thus deformed. Collectively, these terms are known as the
self-attraction and loading (SAL) term. A complete treatment of
the SAL term requires computing a spherical harmonic decomposi-
tion of the ocean tide (see e.g. Ray, 1998; Egbert et al., 2004). This is
not computationally feasible to do in the model as it runs, and is
instead done offline. A simpler approach is to use the scalar
approximation, in which the SAL term is approximated as a con-
stant times the sea surface elevation field (gSAL � bg). The scalar
approximation is significantly less accurate than the spherical har-
monic treatment, and is not accurate enough for many global tide
applications (Ray, 1998). In this study we use a spatially varying
scalar approximation that is based on the TPXO8-atlas M2 SAL
amplitude divided by the TPXO8-atlas M2 tide amplitude (http://
volkov.oce.orst.edu/tides/tpxo8atlas.html), with some spatial
smoothing. We selected this tide atlas because it is widely used
and it has low RMS errors with tidal pressure recorder and tide
gauge stations (Stammer et al., 2014). However, we could have
used any of the other atlases from the data-assimilative models
compared by Stammer et al. (2014) because their tidal elevations
are very similar, in particular in deep water (Table 3 of Stammer
et al. (2014)). The SAL amplitude is directly computed from the
TPXO8-atlas M2 tide using spherical harmonics. For selected simu-
lations, we employ an iterative procedure to achieve numerical
convergence between the tidal elevations and SAL, similar to the
method used by Accad and Pekeris (1978), Arbic et al. (2004),
Egbert et al. (2004) and Lyard et al. (2006). While the initial simu-
lation uses the spatially varying scalar SAL, all subsequent itera-
tions use the full SAL term with spatially varying amplitudes and
phases computed using spherical harmonics and the tidal eleva-
tions from the previous iteration.

We assess the accuracy of the HYCOM simulations relative to
the M2 TPXO8-atlas elevations in each grid cell for four cases: no
SAL, a constant scalar SAL with b ¼ 0:095, a value that gives the
best agreement between the model and TPXO, spatially varying
SAL, and iterated SAL. The measure for the accuracy is defined as

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½gmðtÞ � gTðtÞ�

2i
q

; ð3Þ

where g is the elevation, subscripts ‘‘m’’ and ‘‘T’’ refer to model and
TPXO, t is time, and h i indicate time averaging. Fig. 1 shows the per-
centage of the global surface area where area-weighted RMSEt is
less than the x-axis value for the four cases. In these HYCOM simu-
lations the linear wave drag by Jayne and St. Laurent (2001) is
applied. Fig. 1 illustrates that a conventional globally constant
scalar SAL (median error 4.9 cm) is substantially better than no
SAL (median error 15 cm), but still quite different to the iterated
SAL (median error 3.2 cm). The spatially varying scalar SAL (median
error 3.7 cm) is closer to the iterated SAL and in particular it agrees
well when RMSEt is large.

Motivated by the above results, the drag tuning runs all use the
spatially varying scalar SAL. The tuning with the best-performing
wave drag schemes are then repeated with iterated SAL, without
significantly altering the tuning result. This selective approach also
saves time and effort. Generally, only one iteration is needed to
reach sufficient accuracy.

2.3. Internal wave drag schemes

We test the response of HYCOM to various drag schemes mod-
ified using a range of scale factors (see Table 1 for a summary).

2.3.1. Nycander parameterization
Tensor The tensor scheme of Nycander (2005), with units of

m s�1, is given by

C ¼ Nb

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

x2

s
ðrhrJ þrJrhÞ; ð4Þ

where Nb is the buoyancy frequency at the bottom, f is the Coriolis
frequency, x is a tidal frequency, h ¼ �H is the bottom topography
(increasing upward), and J is a double integral of the topographic
height and a filtered Green’s function. In this scheme C is set to zero
poleward of the turning latitudes where x ¼ f . The buoyancy fre-
quency at the bottom is computed using the GDEM4 global monthly
temperature and salinity climatology database (Carnes et al., 2010),
which is constructed from historical in situ ocean observations. In
our computation of C, we follow the same approach as in Green
and Nycander (2013). Before we compute the roughness rhrJ,
we first average the GEBCO_08 grid to 60 s to reduce computation
time. We refer to this set-up as ‘‘NC tensor’’.

Scalar. The tensor drag can be transformed into a scalar

CNC ¼
hu � C � ui
hjuj2i

ð5Þ

by equating the energy dissipation due to the tensor with the
energy dissipation due to the scalar (Arbic et al., 2010). We use
the TPXO8-atlas velocities for this purpose. We refer to this as
‘‘NC scalar’’.

http://volkov.oce.orst.edu/tides/tpxo8atlas.html
http://volkov.oce.orst.edu/tides/tpxo8atlas.html


Table 1
Overview of the linear internal wave drag schemes and the range of scale factors v used in the barotropic HYCOM simulations. Values between parentheses indicate the range of
scale factors used in selected simulations with iterated SAL. SSG is the SRTM30_PLUS bathymetry with added abyssal hill roughness.

Drag scheme Type Characteristics v range Name

Nycander (2005) Tensor Full 0.5–4 NC tensor
Nycander (2005) Scalar Full 0.5–4 NC scalar
Nycander (2005) Tensor Reduced at supercr. slopes 0.5–5 NC tensor red
Nycander (2005) Scalar Reduced at supercr. slopes 0.5–6 (1–4) NC scalar red
Nycander (2005) Scalar SSG, reduced at supercr. slopes 2–5 (2–3.5) NC scalar SSG red
Jayne and St. Laurent (2001) Scalar Limited above �1000 m 0.25–0.75 (0.25–0.5) JSL
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Reduction at Supercritical Slopes. Internal wave drag schemes are
based on linear theory (Bell, 1975), and therefore only applicable to
subcritical slopes. Subcritical slopes are flatter than the slope of the
internal tide beam, whereas supercritical slopes are steeper.
According to Nycander (2005), the application of his scheme over-
estimates the dissipation rates at supercritical topography. Conse-
quently, Green and Nycander (2013) capped the tidal-mean
dissipation rates at 1 W m�2 in their offline computations, whereas
Green and David (2013) used 0:57C at supercritical slopes to
match the dissipation rates with rates inferred from the TPXO8-
atlas in the South China Sea.

To compensate for the large drag at supercritical slopes, we fol-
low the same approach as highlighted in Nikurashin and Ferrari
(2011), Scott et al. (2011) and Melet et al. (2013), in which the drag
strength at supercritical slopes is reduced by normalizing the drag
by the criticality squared. The criticality

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@h=@xÞ2 þ ð@h=@yÞ2

ðx2 � f 2Þ=ðN2
b �x2Þ

vuut ð6Þ

is the ratio of the topographic slope to the internal tide beam. The
modified Nycander tensor and scalar drag schemes are referred to
as ‘‘NC tensor red’’ and ‘‘NC scalar red’’.

Abyssal Hill Roughness. Finally, we compute a Nycander scalar
for the bathymetry with additional artificial roughness due to the
abyssal hills on mid-ocean spreading ridges (Goff and Arbic,
2010). High resolution bathymetries, such as GEBCO_08 and
SRTM30_PLUS (Becker et al., 2009; Sandwell and Smith, 2009),
are based on sparse mid-ocean measurements that do not capture
these hills with wavelengths <10 km. Goff and Arbic (2010) com-
puted a synthetic abyssal hill topography using statistical parame-
ters of abyssal hill roughness derived from relationships between
the average statistical properties of abyssal hills and the seafloor
spreading rate and direction. The abyssal hill topography was
merged with the 1/120� SRTM30_PLUS bathymetry as discussed
in Timko et al. (2009).

In this paper, we test how the drag, based on the SRTM30_PLUS
merged with the abyssal hill bathymetry, affects the barotropic
tides in HYCOM. SRTM30_PLUS and GEBCO_08 do not differ much
for latitudes equatorward of �60�, the regions that see the stron-
gest M2 internal tide generation. Poleward of 60� there are height
differences of ±100 m, but here the internal wave generation and
associated wave drag are small. The bathymetry is averaged and
subsampled to 1/60� to speed up the drag computation. The drag
strength of this scalar is reduced by normalizing by the criticality
squared. We refer to this scalar drag as ‘‘NC scalar SSG red’’. Note
that the model bathymetry is not updated with this rough bathym-
etry because the response of the flow to abyssal-hills subsampled
on a 1/12� grid is small.
2.3.2. Jayne and St. Laurent parameterization
The scalar linear wave drag term given by Jayne and St. Laurent

(2001) reads
CJSL ¼
p
L

Ĥ2Nb; ð7Þ

where Ĥ is the bottom roughness, Nb is the buoyancy frequency at
the bottom, and L is the wave length of the topography, set to 10 km
in Jayne and St. Laurent (2001). For practical reasons L is often used
as tuning parameter, but we set it to 10 km and apply our indepen-
dent scale factor. Ĥ is computed using the 30 arc seconds GEBCO_08
grid as the average squared depth anomaly over a 1� square with
respect to a plane fit. Nb is again computed using the GDEM4 data-
base. In shallow water, in particular near shelf breaks, this drag
scheme yields unrealistically high values that are an artifact of
the plane fit method. The performance of the Jayne and St. Laurent
scheme is greatly improved by setting drag in waters shallower
than 1000 m to zero. We refer to this depth-limited scheme as
‘‘JSL’’. The results are not very sensitive to the size of the fit square.
Experiments with a 0.5� square yield results nearly identical to the
1� square, but for a scale factor that is twice as large (results not
shown).

Unlike the tensor by Nycander (2005), the JSL scalar is not
bounded by any critical turning latitudes. Additional simulations
are performed for the same scale factors (results not shown), in

which CJSL is scaled with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

=x2
2

q
, where f and x2 are the Cori-

olis and tidal M2 frequencies, and set to zero poleward of the M2

turning latitude of 75�. However, the exclusion of linear wave drag
poleward of this turning latitude does not alter the elevation RMS
errors and energy dissipation rates significantly compared to the
simulations with the unbounded JSL scalar.
2.4. Diagnostics

The model simulations are validated against data-assimilative
TPXO8-atlas sea surface heights, 151 deep-ocean-bottom-pres-
sure-recorder stations (Ray, 2013; Stammer et al., 2014), energetics
computed from TPXO8-atlas velocities, and TPXO dissipation rates.
2.4.1. Sea surface height
The advantage of using TPXO8-atlas, as compared to tide

gauges, is that it covers the global ocean. The RMS error of
TPXO8-atlas M2 elevations against the pelagic tide gauges is very
low – 0.5 cm (Stammer et al., 2014). Hence, we assume that the
TPXO8-atlas is the ‘‘truth’’ for the global ocean.

The most straightforward, but qualitative, comparison is a visual
comparison of the simulated and the TPXO8-atlas M2 amplitudes
and phases. We do this for the optimally tuned Nycander scheme
with reduced strength at supercritical slopes, iterated SAL, and a
scale factor of 2.75 in Fig. 2(a) and (b). Most amphidromic point
locations are correctly simulated in the HYCOM simulations, except
at the Antarctic coast near 200�E. Similarly, HYCOM also captures
the large amplitude regions in location and magnitude. The opti-
mally tuned simulations for the other wave drag schemes display
similar patterns (not shown for the sake of brevity).



Fig. 2. The M2 elevation amplitude (colors) and phase (gray contours separated by 30�) for (a) the HYCOM simulation with the Nycander scalar reduced at supercritical slopes
and a scale factor of 2.75 and iterated SAL and (b) the TPXO8-atlas. (c) The elevation RMS error between this HYCOM simulation and TPXO8-atlas.
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The errors between the simulated and TPXO8-atlas elevations
are quantified with the root-mean-square error averaged over time
in each grid cell, RMSEt (Eq. (3)). The global RMSEt values for the
optimum Nycander scheme are shown in Fig. 2(c). The largest
errors tend to occur in coastal areas, where tidal amplitudes are
largest. Of all the deep basins the North Atlantic has the largest
error. Overall, the errors have become smaller compared to the
RMSEt errors of the predecessor HYCOM simulations (Shriver
et al., 2012). The southward extension of the model domain under-
neath the Antarctic floating ice shelves and the iterated SAL are the
main causes of this reduction.

Global-mean RMS errors are computed in two ways in the liter-
ature. In the most common method, which is used in this paper,
the time and area averaging of the squared difference is done
before the square root is taken (Arbic et al., 2004)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR
RMSE2

t dARR
dA

s
: ð8Þ
Alternatively, the global mean RMS errors can be computed by area-
averaging the RMSEt error

RMSEa ¼
RR

RMSEtdARR
dA

: ð9Þ

RMSEa is 2–3 cm smaller than RMSE when the coastal areas, which
have the largest elevation errors, are included. The RMSEa is about
1 cm smaller than RMSE when the errors are computed for
H > 1000 m.

The long tail in Fig. 1 is caused by the high RMSEt in the coastal
areas of the northern Atlantic (Fig. 2(c)), indicating RMSEa and
RMSE may not be the best metrics for such a distribution. The med-
ian is a more robust metric but is more cumbersome to calculate
compared to RMSE and RMSEa, which are the most appropriate
practical metrics. When the RMSE is computed for areas deeper
than 1000 m, the areas with the largest errors are omitted, and
the RMSE is closer to the median of RMSEt for the entire global
ocean.
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We interpolate the simulated tidal elevations at the locations of
the 151 deep-ocean-bottom-pressure-recorder stations and com-
pute RMSEt between the simulated and tide gauge elevations. The
RMS error, RMSEtg, is calculated over all stations using (Eq. (8)).
We only present RMSEtg in Tables 2 and 3. The RMS errors presented
in all figures are RMSE, computed using TPXO8-atlas elevations. In
the tuning exercises, RMSEtg shows the same trends as RMSE, but
the former is about 2.5 cm larger than the latter because many of
these gauges are in the northern Atlantic, where the model perfor-
mance is weaker. Note that the optimum scale factors in Table 2
relate to the listed RMSE, but not necessarily to the listed RMSEtg,
which optimum value may be off by one scale factor. Hence, the
optimum RMSEtg is slightly lower than the listed RMSEtg. This differ-
ence in optimal tuning can be attributed to the uneven distribution
of the tide gauges over the global ocean.

2.4.2. Energetics
In addition to sea-surface height, we also use kinetic and avail-

able potential energy, as well as energy dissipation rates, to vali-
date the simulations. We compute the time-mean and global
integral of kinetic energy

KE ¼ 1
2
q0

ZZ
Hhu2 þ v2idA; ð10Þ

where u and v are the zonal and meridional components of velocity,
respectively, q0 is the reference density, and A is surface area, and
available potential energy

APE ¼ 1
2

gq0

ZZ
hg2idA: ð11Þ

We compute these values offline using the HYCOM and TPXO8-atlas
velocities and elevations.

The mean rate of working by the tidal forces, i.e. the tidal energy
input (Egbert and Ray, 2001), is

P ¼ gq0

ZZ
gEQ

@g
@t

� �
dA; ð12Þ

where gEQ is the equilibrium ocean tide height. The energy input
should balance dissipation due to quadratic drag and linear wave
drag and a small and ignored contribution of the horizontal eddy
viscosity. The time-mean dissipation due to quadratic drag is

DQ ¼ q0

ZZ
hCDjuj3idA: ð13Þ

The time-mean dissipation due to linear wave drag is

DL ¼ q0

ZZ
hu � C � uidA: ð14Þ

We verify that the global integral of the work done by the SAL
term using (Eq. 12) is near zero (< 10�8 W). However, the regional
work done by SAL, in particular in the coastal zones, can be larger
Table 2
RMS errors between HYCOM and TPXO8-atlas (RMSE) and HYCOM and tide gauge elevations
and dissipation rates (D) for the optimally tuned and three best performing scalar drag sche
equatorward of 66� and water depths deeper than 1000 m. The simulated energy input and
and ‘‘sh’’ refer to tide gauge, deep (H > 500 m) and shallow (H < 500 m), and ‘‘L’’ and ‘‘Q’’

SAL Drag scheme Scale factor RMSE [cm] RMSEtg [cm] KE [1017J]

scl. NC scalar red 3.000 5.09 7.90 1.77
NC scalar SSG red 2.750 5.04 7.71 1.75
JSL 0.400 5.06 7.75 1.75

it. NC scalar red 2.750 4.43 7.10 1.73
NC scalar SSG red 2.500 4.46 6.99 1.72
JSL 0.375 4.46 7.01 1.69

TPXO8-atlas – – – 1.78
than 0.05 W m�2, which is still an order of magnitude smaller than
the input by the equilibrium tide. The spatial correlation between
the two is small.

The energy input and dissipation due to quadratic and linear
wave drag is computed online (Simmons et al., 2004a) and offline.
The online rates still include the M2 nodal corrections for phase
and amplitude (anode ¼ 0:9752) for this particular simulation per-
iod. To compare with the offline and TPXO rates without nodal cor-
rection, we crudely correct the rates offline by multiplying (Eqs.
(12)–(14)) with a�2

node; a�3
node, and a�2

node, respectively. The sum of
the online quadratic and linear dissipation rates is larger than
the global energy input by on average of 0.22 TW, while the sum
of the offline rates is smaller than the global energy input by on
average of 0.28 TW. We average the online and offline rates
because this yields the best agreement between the energy input
and dissipation.

Fig. 3(a) displays the sum of the online linear and quadratic drag
dissipation rates for the optimal Nycander scheme with reduced
drag strength at supercritical slopes. The dissipation due to linear
wave drag is largest at the mid-ocean ridges and island chains,
such as Hawaii, whereas the dissipation due to quadratic drag is
largest in the coastal shelf seas such as the European shelf. The dis-
sipation maps for the other drag schemes have a similar appear-
ance, and are not shown for the sake of brevity.

TPXO does not assimilate tidal currents. Hence, its dissipation
rates are not as reliable as its elevations. Nevertheless, we compare
the simulated dissipation rates (Fig. 3(a)) with the TPXO dissipa-
tion rates (Fig. 3(b)). The latter rates are computed from the differ-
ence between the energy input and flux divergence as discussed in
Egbert and Ray (2001) and Green and Nycander (2013). The energy
input and flux divergence terms are one order of magnitude larger
than the ‘‘residual’’ dissipation rate. As a consequence of this noisy
process, the global dissipation maps have areas with negative rates
(Fig. 3(b)) (Egbert and Ray, 2001; Egbert and Ray, 2003). Similar to
the HYCOM dissipation rates in Fig. 3(a), the TPXO8-atlas dissipa-
tion rates are also large at rough topography and in coastal shelf
seas. However, the deep-water dissipation rates are somewhat dif-
fuse in Fig. 3(b) and the dissipation rates of TPXO8-atlas poorly
resembles the dissipation rate due to the drag at the Mid-Atlantic
Ridge. For this paper, we use dissipation rates inferred from the
TPXO6.2, TPXO7.2, and TPXO8-atlas inverse models. Their range,
as defined by their minimum and maximum values, is indicated
in most figures with a light gray bar. The dissipation due to the lat-
est tidal solution, TPXO8-atlas, is indicated with a dark gray bar.
3. Results

3.1. Global response

In this section, we consider the relation between the globally
averaged RMS error on the one hand, and global energetics and dis-
(RMSEtg), global kinetic energy (KE), available potential energy (APE), energy input (P),
mes with scalar (scl.) and iterated (it.) SAL. RMSE for TPXO8-atlas is computed for areas

dissipation rates are the average of the offline and online rates. Subscripts ‘‘tg’’, ‘‘dp’’,
to linear wave and quadratic bottom drag.

APE [1017J] P [TW] D [TW] Ddp [TW] Dsh [TW] DL [TW] DQ [TW]

1.56 2.61 2.60 1.20 1.40 1.40 1.21
1.54 2.58 2.58 1.20 1.38 1.39 1.19
1.54 2.60 2.57 1.29 1.28 1.28 1.29
1.52 2.50 2.49 1.08 1.41 1.26 1.23
1.51 2.49 2.47 1.08 1.40 1.25 1.22
1.49 2.49 2.45 1.17 1.28 1.16 1.29

1.52 2.47 2.47 0.88 1.59 – –



Table 3
Overview of the M2 RMS elevation errors for the most recent single (top) and multi-layer (bottom) forward model experiments. In the top row, ‘‘Res’’ refers to resolution and
‘‘Observations’’ refers to the observational dataset used to compare the forward models to. ⁄ refers to equatorward of 66� . $ refers to RMSEa . + refers to H > 500 m. ! indicates that it
is estimated from a figure. The ‘‘102’’ and ‘‘151 tide gauges’’ refer to the tide gauges used in Shum et al. (1997) and Ray (2013). The RMS errors in this study are for simulations
with iterated SAL.

Study Linear wave drag scheme Model (layers) Res [�] Observations RMSE >1 km [cm] RMSE all depths [cm]

Jayne and St. Laurent (2001) JSL JSL(1) 1=2 UT-CSR 6:7$

Egbert et al. (2004) Bell OTIS(1) 1=12 TPXO5 � 5	;! � 9	;!

Green and Nycander, 2013 Nycander OTIS(1) 1=8 TPXO7.2 7:0þ

This study NC red HYCOM(1) 2=25 TPXO8 4:4	 6:7	

This study NC red HYCOM(1) 2=25 TPXO8 3:6$;	 4:3$;	

This study NC SSG red HYCOM(1) 2=25 151 tide gauges 7:0

Arbic et al. (2004) Garner HIM(2) 1=4 GOT99 7:3	

Arbic et al. (2004) none HIM(2) 1=4 GOT99 17:1	

Simmons et al. (2004a) none HIM(2) 1=8 GOT99 23:4	

Arbic et al. (2010) Garner HYCOM(32) 2=25 102 tide gauges 8:3
Shriver et al. (2012) Garner HYCOM(32) 2=25 TPXO7.2 7:5$;	

Müller et al. (2012) none MPI-OM(40) 1=10 102 tide gauges 8:2

Fig. 3. Global dissipation rates for (a) the simulation with the optimally tuned Nycander scalar reduced at supercritical slopes with a scale factor of 2.75 and iterated SAL and
(b) TPXO8-atlas.
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sipation rates on the other, for various drag schemes and a range of
scale factors.

3.1.1. Kinetic and available potential energy
As the scale factors increase, the kinetic and available potential

energy decrease. Fig. 4 shows the global RMS errors below 1000 m
and equatorward of 66�, which is the inclination of the orbit of the
TOPEX/Poseidon and Jason altimeters. For small (large) scale fac-
tors, the linear wave drag dissipation in deep water is small (large),
and the simulated amplitudes and energy of the tides are increased
(decreased) relative to TPXO. Although their RMS errors differ, the
energies of all optimally tuned schemes, i.e. those that have the
lowest elevation RMS errors, are close to TPXO values (Fig. 4 and
Table 2). We later show that the locations of large tidal energy dis-
sipation matter for the RMS error. Interestingly, the tensor scheme
does not perform better than the scalar scheme. The scalar scheme
has a slightly lower RMS error than the tensor. The Nycander scalar
with reduced strength, the Nycander scalar with abyssal hills and
reduced strength, and the JSL scheme perform nearly equally well
and have about the same RMSE.

Repeating the tuning exercise for selected scale factors (Table 1)
and iterating the SAL for the three best performing linear wave
drag schemes, the reduced Nycander, the reduced Nycander with
abyssal hills, and JSL, lowers the RMS errors by about 0.6–0.7 cm,
but barely affects the energy levels (Fig. 4 and Table 2). Although
the optimally tuned simulations with iterated SAL have a smaller
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scale factor than the simulations with the spatially varying scalar
SAL (Table 2), the position of the parabola of the JSL scheme rela-
tive to the position of the parabola of the reduced Nycander scalar
does not change substantially before and after iterating the SAL.
This implies that we can use the faster spatially-varying-scalar
SAL approach to compare the performance of the wave drag
schemes relative to each other.

3.1.2. Energy input and dissipation rates
The simulations with the optimally tuned drag schemes, i.e.

the simulations that have the lowest RMS error, have globally
integrated energy input rates that are nearly equal to the glob-
ally integrated sum of the wave and bottom drag dissipation
rates in Fig. 5 (the asterisks). However, their energy input is lar-
ger than the range of TPXO rates. Iterating the SAL for the Nyc-
ander scalar with reduced strength, the Nycander scalar with
abyssal hills and reduced strength, and the JSL scheme improves
the globally integrated energy input and dissipation rates rela-
tive to TPXO (red, cyan, and black crosses in Fig. 5). Although
the HYCOM input/dissipation rates are close to the TPXO8-atlas
dissipation rate, with the reduced Nycander scalar with abyssal
hills performing the best, we show in the next sections that
TPXO
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2.2

2.3

2.4

2.5

2.6

2.7

Fig. 5. The global dissipation rate versus the energy input for the optimal solution (i.e.
marked by the solid light gray line and TPXO8-atlas by the dark gray square.
the spatial dissipation distributions of the simulations differ
from TPXO.

3.1.3. Deep and shallow water dissipation rates
While the sum of the linear and quadratic drag dissipation rates

are within ±0.1 TW for all simulations in Fig. 5, the deep water
(H > 500 m) and shallow water (H < 500 m) dissipation rates por-
tray great variability for all drag schemes and scale factors as seen
in Fig. 6(a) and (b). The deep water dissipation is mainly governed
by the linear wave drag, whereas bottom drag comprises 80–90% of
the dissipation in shallow water (H < 500 m). Hence, an increase in
the scale factor yields an increase in the deep water and a reduc-
tion in the shallow water dissipation.

The simulations with the untuned full Nycander tensor and sca-
lar schemes with a spatially varying scalar SAL have dissipation
rates within the range of TPXO values (iterating the SAL does not
significantly change this). This result is in agreement with Green
and Nycander (2013) who did not tune their Nycander tensor,
although they limited peak drag values. The lowest RMS errors
for the full Nycander tensor and scalar schemes are obtained with
scale factors of 1.5 and 1.25, respectively, which are still relatively
close to unity.
2.7
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having the lowest RMS error) of each drag scheme. The range of the TPXO rates is
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abyssal hill topography has a similar performance as its sister without abyssal hills and is not shown to avoid clutter. The y axis is the elevation RMS error for H > 1000 m and
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For the two reduced Nycander schemes and the JSL scheme rel-
atively more dissipation is placed in deep than in shallow water
compared to the full Nycander schemes. The optimally tuned
schemes have lower RMS errors, but more deep and less shallow
water dissipation when compared to the TPXO values in Fig. 6(a)
and (b).

Iterating the SAL for the JSL and the two reduced Nycander sca-
lar schemes further lowers the RMS errors and also improves the
deep and shallow water dissipation rates relative to TPXO (Fig. 6
and Table 2), but it is unable to remove the relative biases in the
deep and shallow water dissipation rates. The ratio Dshallow=Ddeep

is 1.31, 1.30 and 1.27 for the reduced Nycander scalar, the reduced
Nycander scalar with abyssal hills and the JSL scalar, respectively.
This ratio is smaller than for the TPXO8-atlas, which has
Dshallow=Ddeep ¼ 1:81 (Table 2). Although the RMSE for the three
schemes are similar, the JSL scheme has larger and smaller deep
and shallow water dissipation rates, respectively.

The TPXO dissipation rates do not differentiate between dissi-
pation due to wave and bottom drag. Instead Egbert and Ray
(2001) make a distinction between deep water (e.g. ocean ridges)
and shallow water (coastal shelf areas) dissipation rates. Based
on this distinction, it is generally assumed that all shallow water
barotropic dissipation is due to quadratic bottom drag. This is lar-
gely confirmed by the HYCOM simulations, in which only about
13% of the shallow water dissipation is due to wave drag for the
iterated and reduced Nycander schemes (Table 2). As a conse-
quence, the dissipation due to wave drag is slightly larger than
due to bottom drag. In contrast, for the depth-limited JSL scheme,
all shallow water dissipation is due to bottom drag, and
Dshallow=Ddeep and DQ=DL are the same and both larger than unity.

3.1.4. Dissipation rates as a function of depth
In Fig. 7(a) we compare the area-integrated dissipation due to

the linear wave and quadratic bottom drag, averaged over 100 m
depth bins, for all optimally tuned Nycander and JSL scalars with
TPXO. The simulation with the full Nycander scalar overpredicts
the total TPXO dissipation between �2600 and 200 m depth and
underpredicts it in deeper water (blue line in Fig. 7(a)). The TPXO
dissipation rate has a deep water maximum near 4000 m in
Fig. 7(a). This second maximum may be attributed to deep water
ridges such as the Mid-Atlantic Ridge. The reduction of the drag
at supercritical slopes shifts relatively more dissipation into deeper
water and also yields a deep water maximum in dissipation (red
line in Fig. 7(a)). However, the scheme causes too much energy dis-
sipation between 3000 and 1500 m when compared to TPXO.

Iterating the SAL for the reduced Nycander scheme with and
without abyssal hills further improves the dissipation rates relative
to TPXO, but does not erase the mismatch at 2300 m. The best
agreement with TPXO is obtained for the simulation with abyssal
hills, although its improvement relative to the reduced Nycander
scheme without abyssal hills is modest.

Despite the fact that the simulation for the depth-limited JSL
scheme with iterated SAL has similar elevation RMS errors as
the reduced Nycander schemes, its barotropic energy dissipation
distribution with depth differs (black dashed line in Fig. 7(a)).
The absence of wave drag shallower than 1000 m reduces the dis-
sipation rates between 700 and 150 m compared to the range of
TPXO rates. The TPXO8-atlas dissipation also has a distinct dip
near 800 m. However, this may be associated with the uncer-
tainty in the TPXO dissipation computations. The absence of
wave drag also causes relatively larger bottom drag dissipation
rates shallower than 1000 m (Fig. 7(b)) and larger wave drag dis-
sipation rates between 3000 and 2000 m (Fig. 7(a)). Moreover,
the JSL scheme fails to predict the second maximum in deep
water.

For the Nycander schemes in Fig. 7(b), and for waters shallower
than 250 m, the quadratic drag dissipation rates are larger than the
linear wave drag dissipation rates. The absence of linear drag in
waters shallower than 1000 m for the JSL scheme allows for rela-
tively more quadratic drag dissipation than the Nycander schemes
in water shallower than 1000 m (black dashed line in Fig. 7(b) and
Table 2).

3.2. Basin response

We analyze the response of the RMS errors and dissipation rates
to selected linear wave drag schemes for the three largest ocean
basins: the Atlantic, the Pacific, and Indian oceans (Fig. 8). To avoid
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clutter, the tensors, the JSL scheme, and the reduced Nycander sca-
lar with abyssal hills and iterated SAL are not plotted.

Compared to the other basins, the optimal solutions have the
largest RMS errors in the Atlantic (the open circles in Fig. 8). This
is also apparent in Fig. 2(c). Moreover, the optimal scale factors
in a particular basin are different than the optimal scale factors
for the global solution. This is particularly true for the Atlantic,
where all drag schemes need a larger scale factor to obtain the low-
est RMS error (i.e. the open circles do not coincide with the lowest
RMSE in Fig. 8(a) and (b)). It may be that the bathymetry in the
Atlantic is too smooth, causing an underestimation of the wave
drag strength. For example, the reduced Nycander scalar has a glo-
bal scale factor of 3, but its RMS error is at a minimum in the Atlan-
tic for a scale factor of 5 (numbers near red line in Fig. 8(a)). For
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this scale factor the tidal solutions are poorer in the other basins,
illustrating that improving the RMS in one basin by tuning may
increase the RMS error in another. To check if the tidal solution
improves when more drag is applied in the Atlantic, we perform
one additional simulation for the reduced Nycander scalar scheme
with a scale factor of 5 in the Atlantic and 3 in all other oceans
(black cross in Fig. 8, compare to red circle). Indeed, the solution
with the spatially varying scale factor is close to the optimum solu-
tion in all basins. The reduction in elevation RMSE is 0.6 cm in the
Atlantic, with the strongest reduction occurring in the North Atlan-
tic, where the RMSE is already large (Fig. 2(c)) The global elevation
RMS error is reduced by 0.2 cm compared to the reduced Nycander
scalar (RMSE ¼ 5:09 cm in Table 2). The larger drag increases the
deep water dissipation in the Atlantic at the expense of the bottom
drag dissipation in shallow water, causing a larger discrepancy
with TPXO.

In contrast to the spatially varying scale factor, the inclusion of
synthetic abyssal hills does not significantly improve the tidal solu-
tion relative to the reduced Nycander scheme without abyssal
hills: the RMSE for the most optimal solution is only weakly
lowered in the Atlantic and Indian Oceans, where abyssal hills
are mostly found (compare red and cyan circles in Fig. 8). The
inclusion of the abyssal hills increases the global drag strength,
leading to a reduction in scale factor from 3 to 2.5, and also moves
the global optimal solution closer to the optimal solution for the
Atlantic in Fig. 8(a) and (b). Apparently, in order to reduce the
RMSE in the Atlantic, the inclusion of roughness in deeper water
via abyssal hills is not sufficient. The drag also needs to be
increased in intermediate depths, which can be accomplished
with a scale factor.

Iterating the SAL lowers the RMS error and can bring the
dissipation into closer agreement with TPXO. The results for the
iterated JSL scheme and the reduced Nycander scheme with abys-
sal hills are similar to the reduced Nycander scalar without abyssal
hills and are not shown in Fig. 8 to avoid clutter.
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3.3. Regional response

Finally, in Fig. 9 we compare the TPXO dissipation rates for
regions outlined in Egbert and Ray (2001) with the dissipation rates
for the optimally tuned Nycander scalar reduced at supercritical
slopes (red triangle), the Nycander scalar with abyssal hills reduced
at supercritical slopes (cyan circle), and the JSL scalar (black aster-
isk), all with iterated SAL. The regions numbered 1–28 (labeled A-
I) include shallow (deep) water dissipation sites. The horizontal bars
in Fig. 9(a) mark the minimum and maximum dissipation rates
computed over TPXO4a, TPXO6.2, TPXO7.2, and TPXO8-atlas. The
TPXO4 rates are taken from Table 2 in Egbert and Ray (2001). The
difference between the HYCOM dissipation rate and the mean dissi-
pation rate computed over the four TPXO values is in Fig. 9(b).

Overall, the performance of the three simulations with iterated
SAL is similar, and the HYCOM dissipation rates generally fall within
the range of TPXO rates (Fig. 9(a)). The Hudson shelf and the Mid-
Atlantic Ridge feature the largest spread in TPXO dissipation rates.
While the HYCOM dissipation rates differ by about 25–50 GW with
the mean TPXO dissipation rate for the Hudson shelf (Fig. 9(b)), they
are in better agreement with TPXO8-atlas (Fig. 9(a)).

The effect of the abyssal hill roughness is the most obvious in
the Atlantic, where the agreement with the mean TPXO rates
improves for the Hudson and European shelves compared to the
case with no abyssal hills. On the other hand, the additional rough-
ness increases the dissipation for the Mid Atlantic Ridge, as well as
the discrepancy with the mean TPXO rate (Fig. 9(b)).

The mean differences between the HYCOM and mean TPXO dis-
sipation rates are 3.5, 2.8, and 2.3 GW and the standard deviations
of this difference are 17.8, 16.4, 16.6 GW for the reduced Nycander
scalar, the reduced Nycander scalar with abyssal hills, and the JSL
scalar, respectively. Hence, we conclude that the reduced Nycander
scalar with abyssal hills performs better than the reduced Nycan-
der scalar and that its performance is comparable to JSL for the
regions in Fig. 9.
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4. Discussion and conclusions

This study documents several new approaches and/or findings
that have to our knowledge not been published before. We have
done an in-depth tuning in a barotropic model for dissipation,
globally, regionally, and with depth, at the same time as we tune
for elevation RMS errors. We have found that a scalarized tensor
wave drag performs as well or better than the tensor equivalent.
We have successfully applied a new empirical reduction of the lin-
ear wave drag strength at supercritical slopes in a barotropic
model. Finally, we have computed a Nycander scalar drag for a
bathymetry with additional artificial abyssal hill roughness and
applied this drag in a barotropic model.

In this study we have shown that in order to get the lowest RMS
error with respect to TPXO8-atlas M2 elevations, a tuned internal
wave drag scheme has to be applied in our barotropic HYCOM set
up. This conclusion is consistent with conclusions reached by oth-
ers, e.g. Jayne and St. Laurent (2001), Arbic et al. (2004), Egbert
et al. (2004) and Lyard et al. (2006). Although Green and
Nycander (2013) compared the performance of the Jayne and
St. Laurent (2001) and Nycander (2005) schemes in a barotropic
model, they did not demonstrate whether their RMS elevation
errors and dissipation rates could be improved by applying a
scale factor. The strength of the internal wave drag may differ com-
pared to that in other studies depending on the stratification,
bathymetry, the horizontal resolution of the bathymetry data set,
the barotropic model, how the drag is implemented in the model,
etc. Moreover, the linear drag schemes overestimate the dissipation
at supercritical topography. The overall drag strength is reduced
after applying a correction at supercritical slopes. These are all
practical reasons for applying a scale factor when implementing
the schemes.

The original Nycander scheme is a tensor, the components of
which describe the directionality of the topographic roughness.
We find that the tensor does not perform better than the scalar.
This is to be expected, because the semidiurnal velocities in the
tensor and scalar simulations have similar directions and magni-
tudes as the TPXO8-atlas velocities, on which the scalar scheme
is based. Hence, both simulations have similar dissipation rates
as TPXO. The simulations with the scalar scheme have slightly
lower RMS errors than the simulation with the tensor scheme. This
may be because the scalar scheme is based on TPXO8-atlas veloc-
ities instead of model velocities. The former may be closer to the
‘‘truth’’ than the latter.

Nycander (2005), Green and Nycander (2013) and Green and
David (2013) found that at supercritical slopes the untuned Nycan-
der scheme overestimates the dissipation. Applying the unmodi-
fied scalar scheme and a small scale factor of 1.25, we find that
in intermediate water depths of 500 to 3000 m the dissipation
rates are larger than in TPXO, while in deeper water they are smal-
ler (Fig. 7). Moreover, with this scheme the simulation does not
have the lowest elevation RMS error. We obtain lower RMS errors
for a larger scale factor when the Nycander drag at supercritical
slopes is reduced by the criticality squared (Nikurashin and
Ferrari, 2011; Scott et al., 2011; Melet et al., 2013). The optimally
tuned scheme is more in accordance with the TPXO dissipation
depth profile than the full Nycander scheme (Fig. 7). Since this
modified scheme has less drag, it needs to be amplified by a factor
of about 2.25 to obtain the same dissipation rate as the unmodified
scalar scheme. The reduction in dissipation for the same scale fac-
tor of 1.25 is about 25% from the unmodified to the reduced
scheme. This is comparable to the reduction in barotropic energy
conversion of 33% found by Melet et al. (2013). Melet et al.
(2013) applied the Nycander tensor to SRTM30_PLUS bathymetry
with abyssal hills and TPXO velocities to analytically compute glo-
bal barotropic to baroclinic conversion rates. Melet et al. (2013)
computed 1.5 TW of dissipation for the full Nycander scheme with
a capping of 10 W m�2 and 1.0 TW when the empirical reduction
was applied. The reduction in drag strength in shallow water for
the JSL scheme also causes lower RMS errors similar to the empir-
ical reduction for the Nycander scheme. However, in contrast to
the reduced Nycander scheme, the JSL scheme has a dissipation
depth profile that strongly deviates from TPXO in depths shallower
than 3000 m (Fig. 7).

The application of the Nycander scalar to a bathymetry with
additional abyssal hill roughness on ocean spreading ridges mostly
improves the agreement with TPXO dissipation rates, e.g. Figs. 7
and 9, without improving the elevation RMS error (Table 2). The
inclusion of abyssal roughness on the Mid Atlantic Ridge causes a
noticeable increase of about 20% in the barotropic energy conver-
sion, more so than on the spreading ridges in the Indian Ocean
(compare regions C and B in Fig. 9). The Mid Atlantic Ridge has
more supercritical abyssal hills than the spreading ridge in the
Indian Ocean, causing a larger (relative) increase in the dissipation.
These findings agree with numerical (Timko et al., 2009) and ana-
lytical (Melet et al., 2013) studies. Timko et al. (2009) applied
SRTM30_PLUS bathymetry with abyssal hills in 3D HYCOM and
found global and regional increases of conversion rates compared
to simulations with only SRTM30_PLUS of 5–10% and up to 25%,
respectively. Melet et al., 2013 found mostly regional increases of
up to 60% after critical slope corrections were applied.

Of all basins, the Atlantic Ocean has the largest RMS error
(Figs. 2 and 8). Moreover, its response to the tuning of the various
drag schemes differs from the Pacific and Indian Oceans. For exam-
ple, the full Nycander scalar is the best performing drag scheme in
the Atlantic, but not in the other ocean basins (Fig. 8). Despite this,
the tuning of the drag schemes in the global ocean in Fig. 6 resem-
bles the tuning in the Pacific and Indian Oceans, validating our con-
clusions inferred from Fig. 6. Compared to the optimally tuned
simulations, the RMS errors in the Atlantic can only be lowered
for larger scale factors, i.e., when the drag strength and dissipation
are increased. While the integral of all ocean basins is optimally
tuned, this is not the case for all ocean basins when looked at indi-
vidually: tuning one basin increases the error in the other. Hence,
we apply a spatially varying scale factor to increase the drag in the
Atlantic only. Although this lowers the RMS error by 0.6 cm in the
Atlantic and by 0.2 m globally, the RMS error is still 2–3 cm larger
than in the Pacific and Indian Oceans. Moreover, the discrepancy
with the TPXO dissipation rates has increased. Although the inclu-
sion of abyssal hills causes a rougher Atlantic seafloor, the
improvement of the tidal solution is marginal compared to the
effect of a spatially varying scale factor. Both a spatially varying
scale factor and the inclusion of abyssal hill topography do not sig-
nificantly reduce the RMS error in the Atlantic compared to the
other basins. These large errors may be attributed to the inability
of the model to correctly simulate the known large semidiurnal
tidal resonances in the North Atlantic (Wunsch, 1972). The North
Atlantic resonances yield large tide model sensitivities to bathym-
etry and coastal geometry. For instance, Arbic et al. (2009) showed
that the blocking of Hudson Strait greatly alters tidal solutions in
the northern Atlantic. Bathymetry is imperfectly known and repre-
sented in models, and is thus a likely cause of large errors in the
North Atlantic. This is shown in sensitivity experiments by
Egbert et al. (2004), who found RMS errors up to 7 cm for the deep
ocean when depths were randomly perturbed by up to 10%.

In the tuning experiments with a spatially varying scalar self
attraction and loading (SAL) term, the global energy input is about
0.1 TW larger than in the TPXO8-atlas. Iterating the SAL lowers the
RMS error and the energy input, and brings the dissipation rates
more into agreement with TPXO. The reduced Nycander scalar with
and without abyssal hills and the JSL parameterization with iter-
ated SAL yield similar elevation RMS errors, but the simulations
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with the reduced Nycander schemes, in particular the one with
abyssal hills, have a better agreement with the TPXO dissipation
rates. The schemes with iterated SAL still dissipate more (less)
energy in deeper (shallower) water than TPXO8-atlas (Table 2),
and other data-assimilative barotropic tide models such as
FES2004 (Lyard et al., 2006) and HAMTIDE (Taguchi et al., 2014).
For example, for the reduced Nycander with iterated SAL 43% of
the total dissipation occurs in deep water, whereas for TPXO8-atlas
this is 36%. On the one hand, this discrepancy between TPXO and
the optimally tuned simulations in deep and shallow water dissipa-
tion rates may be attributed to the uncertainty in the TPXO dissipa-
tion rates, which can be negative. On the other hand, the weaker
predictability of the currents compared to the elevations may also
lead to (spatial) differences in dissipation rates. Moreover, the spa-
tial distribution of the energy dissipation may improve as the eleva-
tion RMS error of the simulations is further reduced.

We compare our best RMS error with published results in
Table 3. The studies by Jayne and St. Laurent (2001) and Shriver
et al. (2012) show RMSEa (Eq. (9)), whereas the other studies show
RMSE (Eq. (8)). To our knowledge, the RMS error with TPXO8-atlas
obtained with our forward barotropic model is among the lowest
published for forward barotropic and baroclinic tide models. When
compared to the 151 pelagic tide gauges, the simulation with the
reduced Nycander scheme with abyssal hill roughness is the best
performing solution, but the difference with the simulation with
the reduced Nycander scheme is within a few mm. The inclusion
of an iterated SAL as well as the extension of the southern domain
improves the RMS error significantly compared to the HYCOM set
up used in Shriver et al. (2012). Isopycnal multi-layer models, e.g.
by Simmons et al. (2004a), Arbic et al. (2004), Arbic et al. (2010)
and Shriver et al. (2012), need to apply internal wave drag to
reduce the RMS errors. These models mostly resolve the low verti-
cal modes. The linear wave drag is needed to account for the con-
version of barotropic energy to high-mode internal waves and
turbulent lee-waves, which are not resolved in these relatively
coarse resolution models (Arbic et al., 2004).

In a next step we will apply the linear wave drag to the next
generation of multi-layer HYCOM simulations having both atmo-
spheric and tidal forcing. We will investigate how much of the
barotropic to baroclinic energy conversion is resolved and how
much needs to be parameterized with schemes similar to the ones
evaluated in this study.
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